ÉCOle polytechnique fédérale de lausanne

School of Computer and Communication Sciences
Handout 16
Introduction to Communication Systems
Solutions to Homework 9
November 13, 2008

Problem 1. 1. We see that

$$
5^{2}=25 \equiv 1(\bmod 8)
$$

Thus by exponentiating the above congruence we get

$$
\left(5^{2}\right)^{10} \equiv 1(\bmod 8)
$$

Therefore

$$
5^{21}=5 \times 5^{20} \equiv 5 \times 1 \equiv 5(\bmod 8) .
$$

2. We have that $201=5 \times 40+1$. First notice that

$$
31 \equiv-2(\bmod 33)
$$

Thus

$$
(31)^{5} \equiv(-2)^{5} \equiv-32 \equiv 1(\bmod 33)
$$

Now rasing both sides to the 40 -th power we get

$$
\left((31)^{5}\right)^{40} \equiv(1)^{40} \equiv 1(\bmod 33)
$$

3. The last two digits of any number belongs to the set $\{00,01,02,03,04 \ldots, 97,98,99\}$. This set can be easily identified as the set of numbers modulo 100 . Thus to find the last two digits 9^{30} we must find its modulo w.r.t 100. We have

$$
9^{5}=59049 \equiv 49(\bmod 100)
$$

Therefore

$$
9^{10}=\left(9^{5}\right)^{2} \equiv 49^{2}=2401 \equiv 1(\bmod 100)
$$

Thus

$$
9^{30}=\left(9^{10}\right)^{3} \equiv 1^{3} \equiv 1(\bmod 100)
$$

So the last two digits of 9^{30} are 0,1 .
Problem 2. We know from the Bezout's theorem that for any integers a, b

$$
\operatorname{gcd}(a, b)=\alpha a+\beta b
$$

for some integers α, β. Note that if the $\operatorname{gcd}(a, b)=1$, then we have that

$$
\alpha a=-\beta b+1
$$

Thus

$$
\alpha a \equiv 1(\bmod b)
$$

As a result we have that $\alpha=(a)^{-1}(\bmod b)$.

1. Using the extended Euclid's algorithm we have

$$
\operatorname{gcd}(5,26)=1=(-5) 5+(1) 26
$$

Thus $-5 \equiv 21 \equiv(5)^{-1}(\bmod 26)$.
2. Using the extended Euclid's algorithm we have

$$
\operatorname{gcd}(11,36)=1=(-13) 11+(4) 36
$$

Thus $-13 \equiv 23 \equiv(11)^{-1}(\bmod 36)$.
3. Using Euclid's algorithm we have

$$
\operatorname{gcd}(14,35)=7 \neq 1
$$

So, $14^{-1} \bmod 35$ does not exist.
Problem 3. 1. Since m is a prime number the only integers among $1,2, \ldots, m^{4}$ which have a factor common with m are the multiples of m. The multiples of m less than m^{4} are $\left\{1 \cdot m, 2 \cdot m, 3 \cdot m, \ldots, m^{3} \cdot m\right\}$. Thus there are m^{3} multiples of m. As a result

$$
\phi\left(m^{4}\right)=m^{4}-m^{3}=m^{3}(m-1) .
$$

2. Since p and q are prime numbers, the only positive integer factors of $p q$ are $1, p, q$ and $p q$. So to fing $\phi(p q)$ we must count the multiples of $p, q, p . q$ and subtract it from $p q$. Among the numbers $1,2, \cdots, p q$ there are $\frac{p q}{p}=q$ multiples of p and there are $\frac{p q}{q}=p$ multiples of q. Since p and q are distinct prime numbers, if for an integer number n, both p and q are factors of n then n is divisible by product of them (i.e n is divisible by $p q$). This means that the only number among $1,2,3, \cdots p . q$ which is divisible by both numbers p and q is $p q$. Therefore,

$$
\phi(p q)=p q-p-q+1=(p-1)(q-1)
$$

Problem 4. 1. $42=\times 3 \times 7$. We know that if m, n are relatively prime then $\phi(m n)=$ $\phi(m) \phi(n)$. Thus $\phi(42)=\phi(2) \phi(3) \phi(7)$. And for any prime number $m, \phi(m)=m-1$. Thus $\phi(42)=(2-1)(3-1)(7-1)=12$.
2. We know from the Euler's theorem that if a, m are relatively prime then

$$
a^{\phi(m)} \equiv 1(\bmod m)
$$

This implies that

$$
a^{\phi(m)-1} a \equiv 1(\bmod m) .
$$

Thus $a^{\phi(m)-1} \equiv a^{-1}(\bmod m)$. In this problem since 11,42 are relatively prime, we have

$$
11^{\phi(42)-1}=11^{11} \equiv 11^{-1}(\bmod 42)
$$

using the fact that $\phi(42)=12$. But

$$
\begin{aligned}
11^{2} & =121 \equiv-5(\bmod 42) \\
11^{4} & \equiv(-5)^{2} \equiv 25(\bmod 42) \\
11^{6} & =\left(11^{4}\right) \times\left(11^{2}\right) \equiv 25 \times(-5) \equiv-125 \equiv 1(\bmod 42) \\
11^{11} & =\left(11^{6}\right) \times\left(11^{4}\right) \times 11 \equiv(1)(25)(11) \equiv 275 \equiv 23(\bmod 42)
\end{aligned}
$$

Thus $23 \equiv 11^{-1}(\bmod 42)$.

Problem 5. 1. We enumerate x starting from 0 to see that $x=5$ satisfes the congruence equation.
2. By Euler's theorem we know that $3^{\phi(17)} \equiv 1(\bmod 17)$ since $\operatorname{gcd}(3,17)=1$. Therefore $3^{16} \equiv 1(\bmod 17)$ Thus

$$
3^{5+16}=3^{5} \times 3^{16} \equiv 5 \times 1 \equiv 5(\bmod 17) .
$$

This means $x=5+16=21$ is another solution. In fact, the same method gives us infinitely many solutions for this congruence equation.
3. This congruence equation does not have a solution for x. To prove this let us assume that there exists a number $x \geq 0$ such that $3^{x} \equiv 5(\bmod 15)$. This implies that 15 divides $3^{x}-5$. Therefore 3 also devides $3^{x}-5$ but this is not possible since 3^{x} is divisible by 3 but 5 is not.

