ÉCOle polytechnique fédérale de lausanne

School of Computer and Communication Sciences
Handout 13
Introduction to Communication Systems
Homework 7
November 5, 2009

Problem 1. Break the following ciphertexts which have been encrypted using a monoalphabetic substitution which rotates the letters of the alphabet k positions.
(a) UWTUJWYD NX F SZNXFSHJ.
(b) YGCMPGUU QH CVKVWFG DGEQOGU YGCMPGUU QH EJCTCEVGT

The first sentence is a famous quote of the mathematician Paul Erdos and the second sentence is a famous quote of Albert Einstein. Figure out what they had to say.

Problem 2. The plaintext "school" is encrypted as "KKNBOW".
(a) Was the cipher a monoalphabetic or polyalphabetic cipher (Vignere cipher)?
(b) Which key was used?

Problem 3. Decrypt the ciphertext "EIUEEBERINTSFNEAVEAVTEOEHAEHOTGTEEBEGANOWPSWRHOHACCATWTHFOIEOTIC" obtained by transposition with the key CUP OF TEA.

Problem 4. (a) Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b+c a)$ for any integer c.
(b) Prove that $\operatorname{gcd}(a, b)=\operatorname{gcd}(a, b)=\operatorname{gcd}(5 a+2 b, b+2 a)$.
(c) Prove that $\operatorname{gcd}(m a, m b)=m \cdot \operatorname{gcd}(a, b)$ where m is a non-negative integer.
(d) Prove that $\operatorname{gcd}(a, p)=1$ or p with p a prime number.

Problem 5. 1. Find the $\operatorname{gcd}(144,60)$
2. Find two integers α, β such that $\operatorname{gcd}(144,60)=60 \alpha+144 \beta$.

