Problem 1

Problem 2

b) The system is causal because $h(n)=0$ for $n<0$.
c)

$$
\begin{aligned}
(1-r) \sum_{k=0}^{n} r^{k} & =\sum_{k=0}^{n} r^{k}-r \sum_{k=0}^{n} r^{k} \\
& =\sum_{k=0}^{n} r^{k}-\sum_{k=0}^{n} r^{k+1} \\
& =\sum_{k=0}^{n} r^{k}-\sum_{k=1}^{n+1} r^{k} \\
& =r^{0}+\sum_{k=1}^{n} r^{k}-\left(r^{n+1}+\sum_{k=1}^{n} r^{k}\right) \\
& =1-r^{n+1}
\end{aligned}
$$

d) The system is stable because

$$
\begin{aligned}
\sum_{k=-\infty}^{\infty}|h(k)| & =\sum_{k=0}^{\infty} 2^{-k} \\
& =\lim _{k \rightarrow \infty} \frac{1-2^{-(k+1)}}{1-2^{-1}} \\
& =2<\infty
\end{aligned}
$$

e)

$$
\begin{aligned}
\frac{d}{d r} \frac{1-r^{n+1}}{1-r} & =\frac{d}{d r} \sum_{k=0}^{n} r^{k} \\
& =\sum_{k=0}^{n} \frac{d}{d r} r^{k} \\
& =\sum_{k=0}^{n} k r^{k-1} \\
& =r^{-1} \sum_{k=0}^{n} k r^{k}
\end{aligned}
$$

f)

$$
\begin{aligned}
y(n) & =\sum_{k=-\infty}^{\infty} h(k) x(n-k) \\
& =\sum_{k=0}^{\infty} 2^{-k}(n-k) \\
& =n \sum_{k=0}^{\infty} 2^{-k}-\sum_{k=0}^{\infty} k 2^{-k} \\
& =2 n-\left.2 \frac{d}{d r}\left(\frac{1}{1-r}\right)\right|_{r=2} \\
& =2 n-\frac{1}{2}\left(\frac{1}{(1-1 / 2)^{2}}\right) \\
& =2(n-1)
\end{aligned}
$$

Problem 3

We have a system from which we only know a linear time-invariant recurence relation between the input $x(n)$ and the output $y(n)$, namely

$$
\begin{aligned}
y(n+1) & =y(n)+x(n) \\
\lim _{m \rightarrow-\infty} y(m) & =0
\end{aligned}
$$

a) $y(4)=y(3)+x(3)=y(2)+x(2)+x(3)=y(1)+x(1)+x(2)+x(3)=y(0)+x(0)+x(1)+x(2)+x(3)$
b) Since $\lim _{m \rightarrow-\infty} y(m)=0$

$$
\begin{aligned}
y(n) & =\lim _{m \rightarrow-\infty} y(n) \\
& =\lim _{m \rightarrow-\infty}\left(y(m)+\sum_{k=m}^{n-1} x(k)\right) \\
& =\sum_{k=-\infty}^{n-1} x(k)
\end{aligned}
$$

The output signal is a summation of the input signal.
c) For $n<0$, since $\delta(n)=0$ then $h(n+1)=h(n)$ and $h(n+1)=0$ if $n<0 . h(1)=\delta(0)=1$ and for $n \geq 1$ since $\delta(n)=0$ then $h(n+1)=h(n)=h(n-1)=\ldots=h(1)=1$. We finally found that

$$
h(n)=\left\{\begin{array}{cc}
1 & \text { if } n \geq 1 \\
0 & \text { otherwise }
\end{array} .\right.
$$

d) The general output is

$$
\begin{aligned}
y(t) & =\sum_{k=-\infty}^{\infty} h(k) x(n-k) \\
& =\sum_{k=1}^{\infty} x(n-k) \\
& =\sum_{k=-\infty}^{-1} x(n+k) \\
& =\sum_{k=-\infty}^{n-1} x(k)
\end{aligned}
$$

This is same answer than the one found in b)
e) The system is unstable because $\sum_{k=\infty}^{\infty}|h(k)|=\sum_{k=1}^{\infty} 1=\infty$. An example of unstable input signal is $x(n) \equiv 1$.

Problem 4

$$
\sin (10 \pi t)+\sin (30 \pi t)
$$

a) The maximum frequency between these two sinusoïds is 15 Hz . So $f_{s}>30 \mathrm{~Hz}$.
b) If we use the sampling frequency $f_{s}=20 \mathrm{~Hz}$, what the sampled signal would be?

$$
\begin{aligned}
\sin \left(10 \pi \frac{n}{20}\right)+\sin \left(30 \pi \frac{n}{20}\right) & =\sin \left(\frac{\pi}{2} n\right)+\sin \left(\frac{3 \pi}{2} n\right) \\
& =\sin \left(\frac{\pi}{2} n\right)+\sin \left(-\frac{\pi}{2} n\right) \\
& =\sin \left(\frac{\pi}{2} n\right)-\sin \left(\frac{\pi}{2} n\right) \\
& =0
\end{aligned}
$$

c) The ideal filter will supress all frequency greater than $\frac{f_{s}}{2}$. So the sampled signal would be

$$
\sin \left(10 \pi \frac{n}{20}\right)=\sin \left(\frac{\pi}{2} n\right)
$$

d) The sampling frequency is $f_{s}=25 \mathrm{~Hz}$ and we use an ideal interpolator. What the reconstructed signal would be? The first sinusoïd is perfectly reconstructed beacause $5 H z<\frac{25}{2} H z$, but the second one is altered. An alias frequency for 15 Hz and lying in the interval $(-25 / 2,25 / 2)$ is given by $15-25=$ -10 Hz . Thus the reconstructed signal would be

$$
\sin (10 \pi t)-\sin (20 \pi t)
$$

Problem 5

We have a continuous signal $x(t)$ with a missing part between $t=1$ and $t=-1$. The signal is zero everywhere and the only information we know in the missing part is $x(0)=1$. We want to interpolate this signal.
a) We have to solve two linear system of equation, one for $\{x(-1), x(0)\}$ and an other for $\{x(0), x(1)\}$. For the first part we have

$$
\left\{\begin{array}{c}
-a+b=0 \\
b=1
\end{array}\right.
$$

this gives $a=1$ and $b=1$. For the second part we have

$$
\left\{\begin{array}{c}
a+b=0 \\
b=1
\end{array}\right.
$$

and we have $a=-1$ and $b=1$.
b) We have to solve the following linear system of equation

$$
\left\{\begin{array}{c}
a-b+c=0 \\
c=1 \\
a+b+c=0
\end{array}\right.
$$

we find $a=-1, b=0$ and $c=1$.
c) Now we have two equations given by the derivatives i.e. $3 a t^{2}+2 b t+c$. The system is

$$
\left\{\begin{array}{c}
-a+b-c+d=0 \\
d=1 \\
3 a-2 b+c=0 \\
c=1
\end{array}\right.
$$

and we find $a=-2, b=-3, c=0, d=1$

