Problem 1

Sketch the following signals

$$
\left.\begin{array}{rl}
\text { Triangle }(t) & =\left\{\begin{array}{ccc}
0 & \text { if } & |t|>1 \\
1-|t| & \text { if } & |t| \leq 1
\end{array}\right. \\
\delta_{-1}(t) & =\left\{\begin{array}{lll}
0 & \text { if } & t<0 \\
1 & \text { if } & t \geq 0
\end{array}\right. \\
\delta_{-2}(t) & =\int_{-\infty}^{t} \delta_{-1}(\tau) d \tau \\
\operatorname{Sum}(t) & =\operatorname{Triangle}(t)+\delta_{-1}(t)
\end{array} \begin{array}{rl}
\operatorname{Diff}(t) & =\operatorname{Triangle}(t)-\delta_{-1}(t)
\end{array}\right\} \begin{array}{lll}
1 & \text { if } & t=0 \\
\frac{\sin \pi t}{\pi t} & \text { if } & t \neq 0
\end{array} ~(t)=\left\{\begin{array}{l}
\text { Sing }
\end{array}\right.
$$

Problem 2

Specify the amplitude, frequency and phase of the signal:

$$
x(t)=5 \cos \left(10 t+\frac{\pi}{2}\right)
$$

What is the period of $x(t)$?

Problem 3

a) We know that a continuous-time sinusoid is a periodic signal. Is the sum of two sinusoids also periodic? Under which conditions? What is the period?
b) Sketch $x(t)=5 \cos (10 t+2)+2.5 \sin (5 t)$. Show that $x(t)$ is periodic. Which is the period?
a) Let $x, y: \mathbb{R} \rightarrow \mathbb{R}$ be two real functions. We define a new function $z(t)=(x * y)(t)$ where

$$
(x * y)(t):=\int_{-\infty}^{\infty} x(s) y(t-s) d s
$$

this operation is called the convolution product of x and y.
Show that $(x * y)(t)=(y * x)(t)$.
b) For discrete time namely for $x, y: \mathbb{Z} \rightarrow \mathbb{R}$, we define the convolution by

$$
(x * y)_{t}=\sum_{s=-\infty}^{\infty} x_{s} y_{t-s}
$$

Defining $z_{t}=(x * y)_{t}$, for which condition on y we have $\sum_{t=-\infty}^{\infty} z_{t}=\sum_{s=-\infty}^{\infty} x_{s} \neq 0$?

