ÉCOle polytechnique fédérale de lausanne

School of Computer and Communication Sciences
Handout 19
Introduction to Communication Systems
Homework 10
November 26, 2009
This is your third graded homework. Please consider the following rules:

- You have two weeks to hand in your solution.
- Each problem should be answered in one piece of paper, otherwise your answers will not be graded.
- Your name and number should be written on each piece of paper.

Problem 1. For the following statements, decide whether or not it is correct. Justify your answer with a short proof for true statements and with a counterexample for false ones.
a) If a and b are two integer numbers and each of them is divisible by the other, then $a=b$.
b) If $a^{2} \equiv 1(\bmod 12)$ then $a \equiv 1$ or $(-1)(\bmod 12)$
c) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$ then $a . c \equiv b \cdot d(\bmod m)$
d) If $a^{n}-1$ is a prime number then $a=2$ and n is also a prime number.
e) For every positive integer $m, m^{2}+m+41$ is always a prime number.

Problem 2. Show that the summation of all the positive integer numbers smaller than 2009 which are co-prime with respect to 2009, is divisible by 2009 .

Problem 3. Consider an RSA cryptosystem in which every letter of the plaintext is encoded by its alphabetic position +9 . For example a is encoded as 10 , b is encoded as 11 and z is encoded as 35. (We only consider lower-case letters) Suppose that $m=71$ and $K=3$.
a) Encrypt the plaintext "epfl"
b) Using the public key K, find the private key k.
c) Decrypt the ciphertext 16-13-6

Problem 4. Find three consecutive integer numbers $n, n+1, n+2$ so that n is divisible by $11, n+1$ is divisible by 10 and $n+2$ is divisible by 9 .

Problem 5. Suppose that a, b and n are positive integer numbers.
a) Show that if n is an odd number then $a^{n}+b^{n}$ is divisible by $a+b$.
b) Show that if $n=4 k+2$ then $a^{n}+b^{n}$ is divisible by $a^{2}+b^{2}$
c) Suppose that $p=4 k+3$ is an odd prime number. Use the previous parts to show that if $a^{2}+b^{2}$ is divisible by p then both a and b must be divisible by p. (Hint: Use the fact that if a is not divisible by p then $a^{p-1} \equiv 1(\bmod p$.)

