ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 1	Introduction to Communication Systems
Homework 1	October 17, 2009

PROBLEM 1. Consider the three probability distributions $R = \{0.25, 0.25, 0.25, 0.25, 0.25\}, P = \{0.4, 0.35, 0.15, 0.1\}$ and $Q = \{0.25, 0.35, 0.15, 0.25\}.$

- 1. Compute the three entropies H(R), H(P) and H(Q). Which one is larger?
- 2. Can you answer the above question without computing explicitly H(R), H(P) and H(Q)?

PROBLEM 2. Consider a random variable s which takes an infinite number of values whith corresponding probabilities $p_i = \frac{\alpha}{2^{i+1}}, i \in \mathbb{N} = \{1, 2, 3, ...\}.$

- 1. For what value of α this is a probability distribution?
- 2. What is the entropy of s?

Hint: If |r| < 1, $\sum_{i=0}^{\infty} (a+id)r^i = \frac{a}{1-r} + \frac{rd}{(1-r)^2}$.

PROBLEM 3. For each of the following three codes, say if it is uniquely decodable. If so, is it instantaneous?

	Code 1	Code 2	Code 3
s_1	0	0	0
s_2	1	10	01
s_3	00	110	011
s_4	11	111	111