ÉCOle polytechnique fédérale de lausanne

School of Computer and Communication Sciences

Problem 1. Consider the three probabilitiy distributions $R=\{0.25,0.25,0.25,0.25\}, P=$ $\{0.4,0.35,0.15,0.1\}$ and $Q=\{0.25,0.35,0.15,0.25\}$.

1. Compute the three entropies $H(R), H(P)$ and $H(Q)$. Which one is larger?
2. Can you answer the above question without computing explicitly $H(R), H(P)$ and $H(Q)$?

Problem 2. Consider a random variable s which takes an infinite number of values whith corresponding probabilities $p_{i}=\frac{\alpha}{2^{2+1}}, i \in \mathbb{N}=\{1,2,3, \ldots\}$.

1. For what value of α this is a probability distribution?
2. What is the entropy of s ?

Hint: If $|r|<1, \sum_{i=0}^{\infty}(a+i d) r^{i}=\frac{a}{1-r}+\frac{r d}{(1-r)^{2}}$.
Problem 3. For each of the following three codes, say if it is uniquely decodable. If so, is it instantaneous?

	Code 1	Code 2	Code 3
s_{1}	0	0	0
s_{2}	1	10	01
s_{3}	00	110	011
s_{4}	11	111	111

