ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences	
Handout 12 Homework 6	Advanced Digital Communications November 6, 2009
Problem 1.	1 1
	$Q(D) = (1 - e^{-4}) \frac{1}{1 - e^{-2}D} \frac{1}{1 - e^{-2}D^{-1}}$
and whitening filter is	
	$W(D) = (1 - e^{-4}) \frac{1}{1 - e^{-2}D} \frac{1}{1 - e^{-2}D^{-1}}$
Problem 2.	1 1
	$Q(D) = (1 - \frac{1}{2}D)(1 - \frac{1}{2}D^{-1})$
and	1
	$F(D) = 1 - \frac{1}{2}D$
So	$y_k = \frac{ p }{\sqrt{N_0}} (x_k - \frac{1}{2}x_{k-1}) + w_k$
PROBLEM 3. We know	
1	$S_z(D) = S_u(D)C(D)C^*(D^{-*})$
also we can compute	$S_z(D) = (1 - 0.9D)(1 - 0.9D^{-1})$
SO	C(D) (1 0.0 D)
	C(D) = (1 - 0.9D)
is the coloring filter.	
PROBLEM 4. Consider transmission over an ISI channel with PAM and symbol period T . Let $\phi(t) = \frac{1}{\sqrt{T}} \operatorname{sinc}(\frac{t}{T})$ and $h(t) = \delta(t) - \frac{1}{2}\delta(t-T)$. Assume that AWGN noise has power spectral density N_0 .	

(b)

$$p(t) = \frac{1}{\sqrt{T}}\operatorname{sinc}(\frac{t}{T}) - \frac{1}{2\sqrt{T}}\operatorname{sinc}(\frac{t-T}{T})$$

$$||p|| = \int_{-\infty}^{\infty} p^2(t) dt = \frac{5}{4}$$

(c)

$$E(Z_n Z_{n-k}^*) = E(\int z(t)\hat{\phi}_n(t) \, dt \int z(t)\hat{\phi}_{n-k}(t) \, dt) = N_0 q_k$$

where $q_0 = 1$ and $q_1 = q_{-1} = -\frac{2}{5}$. So the whitening filter is

$$G(D) = \sqrt{\frac{5}{4}} \frac{1}{1 - \frac{1}{2}D^{-1}}$$

so the resulting channel is

$$y_k = x_k - \frac{1}{2}x_{k-1} + w_k$$

(d)