ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 13
Advanced Digital Communications
Homework 5

Problem 1. (a) We know Fourier transform of sinc function is a rect. So the Fourier transform of sinc^{2} is rect $*$ rect. The Fourier transform of

$$
\operatorname{sinc}^{2}(W t)
$$

is

$$
\frac{1}{W} \Lambda\left(\frac{f}{W}\right)
$$

,where $\Lambda(f)$ is a triangle function zero valued at $|f|=1$ and unit valued at $f=0$.
(b)

$$
v(t)=\sum_{k} u(K T) \operatorname{sinc}\left(\frac{t}{T}-k\right) * \operatorname{sinc}^{2}(W t)=\frac{1}{2 W} \sum_{k} u(K T) g(t-K T)
$$

(c) Because both $u(K T)$ and $g(t-K T)$ are non negative then $v(t)$ is non negative.
(d) In formula $u(t)=\sum_{k} u(K T) \operatorname{sinc}\left(\frac{t}{T}-k\right)$, we set $u(t)=1$. The result follows.
(e) We take Fourier transform of

$$
\sum_{k} g\left(\frac{t}{T}-k\right)=g\left(\frac{t}{T}\right) * \sum_{k} \delta(t-k)
$$

We get

$$
G(f T) \sum_{k} \delta(f-k)=2 \frac{1}{W} \delta(f)
$$

so $\sum_{k} g\left(\frac{t}{T}-k\right)=2$
(f)

$$
v(t)=\sum_{k} u(k T) g(t-k T) \leq \sum_{k} g(t-k T)=2
$$

(g)

$$
\begin{align*}
|v(t)| & =\left|\sum_{k} u(k T) g(t-k T)\right| \tag{1}\\
& \leq \sum_{k}|u(k T)||g(t-k T)| \tag{2}\\
& \leq \sum_{k}|g(t-k T)| \tag{3}\\
& =\sum_{k} g(t-k T) \tag{4}\\
& =2 \tag{5}
\end{align*}
$$

Problem 2. (a) For $0 \leq t \leq \frac{1}{2}$, we have

$$
p(t) p(t-1)=p(t)-p^{2}(t)=0
$$

So the inner product which is an integration is also zero.
(b) $p(t) p(t-k)$ has nonzero values only for $k=1$. The rest follows from part (a).
(c) The case $|k|=1$ and $m=0$ easily follows from previous part. For the other values of k the product of two functions is zero everywhere.
(d) We know $p(t)$ is zero-one valued function which is symmetric with respect to $\frac{1}{2}$, so

$$
\int_{0}^{1} p^{2}(t) e^{j 2 \pi m t} d t=0
$$

(e) yes, this property will hold.

Problem 3. (a) We want to minimized the MSE,

$$
\mathrm{MSE}=E\left(x^{2}\right)+E\left(\hat{x}^{2}\right)-2 E(x \hat{x})
$$

so,

$$
\mathrm{MSE}=E\left(x^{2}\right)+a^{2}\left|c^{t} h\right|^{2} E\left(x^{2}\right)+a^{2} \frac{N_{0}}{2}-2 a\left|c^{t} h\right| E\left(x^{2}\right)
$$

By differentiating with respect to a and setting it equal to zero we will have the result.
(b) The value of MSE is

$$
\frac{\frac{N_{0}}{2} E\left(x^{2}\right)}{\left|c^{t} h\right|^{2} E\left(x^{2}\right)+\frac{N_{0}}{2}}
$$

By simplifying above we will have the result.
(c) To minimize the MSE we should maximize the denominator, by Cauchy inequality we know

$$
\left|c^{t} h\right|^{2} \leq\|h\|^{2}
$$

and it satisfies the equality if h and c are proportional to each other, putting the norm constraint we will have $c=\frac{h}{|h|}$.
Problem 4. We set $\hat{x}=A^{t} Y$. By orthogonality principle we have,

$$
E\left((X-\hat{X}) Y^{*}\right)=0
$$

So we have

$$
E\left(X Y^{*}\right)=E\left(A^{t} Y Y^{*}\right)
$$

So in general we will have

$$
\left[\begin{array}{ll}
E\left(Y_{1} Y_{1}^{*}\right) & E\left(Y_{1} Y_{2}^{*}\right) \\
E\left(Y_{2} Y_{1}^{*}\right) & E\left(Y_{2} Y_{2}^{*}\right)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{l}
E\left(X Y_{1}^{*}\right) \\
E\left(X Y_{2}^{*}\right)
\end{array}\right]
$$

Which is

$$
\left[\begin{array}{ll}
\mathcal{E}_{x}+E\left(Z_{1} Z_{1}^{*}\right) & \mathcal{E}_{x}+E\left(Z_{1} Z_{2}^{*}\right) \\
\mathcal{E}_{x}+E\left(Z_{2} Z_{1}^{*}\right) & \mathcal{E}_{x}+E\left(Z_{2} Z_{2}^{*}\right)
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2}
\end{array}\right]=\left[\begin{array}{c}
\mathcal{E}_{x} \\
\mathcal{E}_{x}
\end{array}\right]
$$

We solve the above linear equations for each case
(a)

$$
a_{1}=a_{2}=\frac{\mathcal{E}_{x}}{2 \mathcal{E}_{x}+1}
$$

(b)

$$
a_{1}=a_{2}=\frac{\mathcal{E}_{x}}{2 \mathcal{E}_{x}+1+\frac{\sqrt{2}}{2}}
$$

(c) In this case the set of linear equations has infinite solutions, any of them is good for us. In particular

$$
a_{1}=a_{2}=\frac{\mathcal{E}_{x}}{2\left(\mathcal{E}_{x}+1\right)}
$$

