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School of Computer and Communication Sciences

Handout 11 Advanced Digital Communications
Homework 4 November 6, 2009

Problem 1. (a)

Pr(R ≤ r) = Pr(|z| ≤ r) (1)

=

∫ ∫
Pz(x+ iy) dx dy (2)

=

∫ r

0

∫ 2π

0

Pz(u cos θ + iu sin θ)u du dθ (3)

=

∫ r

0

∫ 2π

0

Pz(ue
iθ)u du dθ (4)

(5)

Differentiating with respect to r will yield:

PR(r) = r

∫ 2π

0

Pz(re
iθ) dθ

(b)
Pr(U ≤ u) = Pr(R2 ≤ u) = Pr(R ≤

√
u)

Differentiating with respect to u:

PU(u) =
1

2
√
u
PR(
√
u) =

1

2

∫ 2π

0

Pz(
√
ueiθ) dθ

(c) Since z is circularly symmetric, Pz(
√
ueiθ) does not depened on θ.

PU(u) = πPZ(
√
u)

(d) If x and y are independent and with common density p, we have:

Pz(x+ iy) = Pz(
√
x2 + y2(cosφ+ i sinφ)) = p(x)p(y)

Using part (c), we have

PU(x2 + y2) = πPz(
√
x2 + y2) (6)

= πp(x)p(y) (7)

(e) Evaluating PU(x2 + y2) at x = 0 and y = 0, we would have

PU(x2 + y2) =
πPu(x

2)Pu(x
2)

(πp(0))2

Let us define f(y) = PU (u)
(πp(0))2

. This is a continous function and satifies f(a + b) =

f(a)f(b) for all nonnegative a and b. Using hint we have f(a) = eβa. Solving for β
by integrating PU(u) and making it equal to 1.

β = −πp2(0)



(f) Combining above we have

PZ(z) = PZ(|z|) =
1

π
PU(|z|2) =

1

π
e−
|z|2

σ2

So Z is a Gaussian random variable.

Problem 2.

(a) By Markov bound, for any positive s, we have

Pr(Z ≥ b) = Pr(esZ ≥ esb) ≤ E
(
es(Z−b)

)
, s ≥ 0.

(b)

Q(x) = Pr(z ≥ x) (8)

=
E
(
esZ
)

esx
(9)

=
e
s2

2

esx
(10)

= e−
x2

2 (11)

In last step, we used the fact that in order to minimize the exponent we should take
the value of s = x.

(c)

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt (12)

=
1√
2π

∫ ∞
x

t

t
e−

t2

2 dt (13)

= − 1√
2π

e−
t2

2

t
|∞x −

1√
2π

∫ ∞
x

1

t2
e−

t2

2 dt (14)

≤ 1√
2πx2

e−
x2

2 (15)

(16)

For upperbound we have

Q(x) =
1√
2π

∫ ∞
x

e−
t2

2 dt (17)

=
1√
2π

∫ ∞
x

t

t
e−

t2

2 dt (18)

= − 1√
2π

e−
t2

2

t
|∞x −

1√
2π

∫ ∞
x

t

t3
e−

t2

2 dt (19)

= − 1√
2π

e−
t2

2

t
|∞x +

1√
2π

e−
t2

2

t3
|∞x +

1√
2π

∫ ∞
x

1

t4
e−

t2

2 dt (20)

≥
(
1− 1

x2

) 1√
2πx2

e−
x2

2 . (21)
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(d) Let t = y + x, and we have

Q(x) =
1√
2π
e−

x2

2

∫ ∞
0

e
−y2

2
−xy dy

It is obvious that

e
−y2

2 ≤ 1

By mean value theorem and taylor expansion for some positive value y∗, we have

e
−y2

2 = 1− y2

2
+
y4
∗
8
≥ 1− y2

2

We know ∫ ∞
0

e−xy dy =
1

x

and ∫ ∞
0

y2

2
e−xy dy =

1

x3

Putting these facts together will give the bounds.

(e) We have

Pr(|x1| ≤ x, |x2| ≤ x) = Pr(|x1| ≤ x) Pr(|x2| ≤ x) = (1− 2Q(x))2

(f) We have

Pr(|x1|2 + |x2|2 ≤ x) =

∫ 2π

0

∫ x

0

1

2π
e−

r2

2 r dr dθ = 1− e−
x2

2 .

(g) Circle is contained in the square and we ignore Q2(x). We have the result.

Problem 3. A baseband-equivalent waveform (ωc > 2π)

x̃bb(t) = (x1 + jx2)sinc(t)

is convolved with the complex filter

w1(t) = δ(t)− jδ(t− 1)

(1)
y(t) = (x1 + jx2)sinc(t)− j(x1 + jx2)sinc(t− 1)

(2)

z(t) = w2(t) ∗ y(t) (22)

= 2jsinc(t) ∗ ((x1 + jx2)sinc(t)− j(x1 + jx2)sinc(t− 1)) (23)

= 2j(x1 + jx2)sinc(t) + 2(x1 + jx2)sinc(t− 1) (24)
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(3) We have
zbb(t) = 2j(x1 + jx2)sinc(t) + 2(x1 + jx2)sinc(t− 1)

and
x̃bb(t) = (x1 + jx2)sinc(t)

and
w̃(t) = hbb(t) = 4sinc(t− 1) + j4sinc(t).

, which satify the equation

zbb(t) = xbb(t) ∗
1

2
hbb(t)

Problem 4. For mapping one we have

Pb =
3

2
Q(

d

2σ
)

and for mapping two

Pb = Q(
d

2σ
)

Problem 5. (a)

fV |U(v|a) =
1

(πN0)n
e
−||v−a||2

N0

and

fV |U(v| − a) =
1

(πN0)n
e
−||v+a||2

N0

(b)

LLR(v) = log
fV |U(v| − a)

fV |U(v|a)
=
−||v − a||2 + ||v + a||2

N0

.

(c) ML rule is comparing LLR to the constant zero and because LLR depends on differ-
ence of distance of channel output to vectors a and −a, ML is a minimum distance
detector.

(d)
||v − a||2 = ||v||2 − 2〈v, a〉+ ||a||2

and
||v + a||2 = ||v||2 + 2〈v, a〉+ ||a||2

By substituting in (c) one gets the result.

(e) In the detection, only the real part of the 〈v, a〉 matters and it is important if it is
positive or negative, but |v, a| preserves none of the above.

(f) No, if v is in this space cv can be out of the space.
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