ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. (a)

$$
\begin{align*}
\operatorname{Pr}(R \leq r) & =\operatorname{Pr}(|z| \leq r) \tag{1}\\
& =\iint P_{z}(x+i y) d x d y \tag{2}\\
& =\int_{0}^{r} \int_{0}^{2 \pi} P_{z}(u \cos \theta+i u \sin \theta) u d u d \theta \tag{3}\\
& =\int_{0}^{r} \int_{0}^{2 \pi} P_{z}\left(u e^{i \theta}\right) u d u d \theta \tag{4}
\end{align*}
$$

Differentiating with respect to r will yield:

$$
P_{R}(r)=r \int_{0}^{2 \pi} P_{z}\left(r e^{i \theta}\right) d \theta
$$

(b)

$$
\operatorname{Pr}(U \leq u)=\operatorname{Pr}\left(R^{2} \leq u\right)=\operatorname{Pr}(R \leq \sqrt{u})
$$

Differentiating with respect to u :

$$
P_{U}(u)=\frac{1}{2 \sqrt{u}} P_{R}(\sqrt{u})=\frac{1}{2} \int_{0}^{2 \pi} P_{z}\left(\sqrt{u} e^{i \theta}\right) d \theta
$$

(c) Since z is circularly symmetric, $P_{z}\left(\sqrt{u} e^{i \theta}\right)$ does not depened on θ.

$$
P_{U}(u)=\pi P_{Z}(\sqrt{u})
$$

(d) If x and y are independent and with common density p, we have:

$$
P_{z}(x+i y)=P_{z}\left(\sqrt{x^{2}+y^{2}}(\cos \phi+i \sin \phi)\right)=p(x) p(y)
$$

Using part (c), we have

$$
\begin{align*}
P_{U}\left(x^{2}+y^{2}\right) & =\pi P_{z}\left(\sqrt{x^{2}+y^{2}}\right) \tag{6}\\
& =\pi p(x) p(y) \tag{7}
\end{align*}
$$

(e) Evaluating $P_{U}\left(x^{2}+y^{2}\right)$ at $x=0$ and $y=0$, we would have

$$
P_{U}\left(x^{2}+y^{2}\right)=\frac{\pi P_{u}\left(x^{2}\right) P_{u}\left(x^{2}\right)}{(\pi p(0))^{2}}
$$

Let us define $f(y)=\frac{P_{U}(u)}{(\pi p(0))^{2}}$. This is a continous function and satifies $f(a+b)=$ $f(a) f(b)$ for all nonnegative a and b. Using hint we have $f(a)=e^{\beta a}$. Solving for β by integrating $P_{U}(u)$ and making it equal to 1 .

$$
\beta=-\pi p^{2}(0)
$$

(f) Combining above we have

$$
P_{Z}(z)=P_{Z}(|z|)=\frac{1}{\pi} P_{U}\left(|z|^{2}\right)=\frac{1}{\pi} e^{-\frac{|z|^{2}}{\sigma^{2}}}
$$

So Z is a Gaussian random variable.

Problem 2.

(a) By Markov bound, for any positive s, we have

$$
\operatorname{Pr}(Z \geq b)=\operatorname{Pr}\left(e^{s Z} \geq e^{s b}\right) \leq E\left(e^{s(Z-b)}\right), \quad s \geq 0
$$

(b)

$$
\begin{align*}
Q(x) & =\operatorname{Pr}(z \geq x) \tag{8}\\
& =\frac{E\left(e^{s Z}\right)}{e^{s x}} \tag{9}\\
& =\frac{e^{\frac{s^{2}}{2}}}{e^{s x}} \tag{10}\\
& =e^{-\frac{x^{2}}{2}} \tag{11}
\end{align*}
$$

In last step, we used the fact that in order to minimize the exponent we should take the value of $s=x$.
(c)

$$
\begin{align*}
Q(x) & =\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t \tag{12}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \frac{t}{t} e^{-\frac{t^{2}}{2}} d t \tag{13}\\
& =-\left.\frac{1}{\sqrt{2 \pi}} \frac{e^{-\frac{t^{2}}{2}}}{t}\right|_{x} ^{\infty}-\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \frac{1}{t^{2}} e^{-\frac{t^{2}}{2}} d t \tag{14}\\
& \leq \frac{1}{\sqrt{2 \pi x^{2}}} e^{-\frac{x^{2}}{2}} \tag{15}
\end{align*}
$$

For upperbound we have

$$
\begin{align*}
Q(x) & =\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} e^{-\frac{t^{2}}{2}} d t \tag{17}\\
& =\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \frac{t}{t} e^{-\frac{t^{2}}{2}} d t \tag{18}\\
& =-\left.\frac{1}{\sqrt{2 \pi}} \frac{e^{-\frac{t^{2}}{2}}}{t}\right|_{x} ^{\infty}-\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \frac{t}{t^{3}} e^{-\frac{t^{2}}{2}} d t \tag{19}\\
& =-\left.\frac{1}{\sqrt{2 \pi}} \frac{e^{-\frac{t^{2}}{2}}}{t}\right|_{x} ^{\infty}+\left.\frac{1}{\sqrt{2 \pi}} \frac{e^{-\frac{t^{2}}{2}}}{t^{3}}\right|_{x} ^{\infty}+\frac{1}{\sqrt{2 \pi}} \int_{x}^{\infty} \frac{1}{t^{4}} e^{-\frac{t^{2}}{2}} d t \tag{20}\\
& \geq\left(1-\frac{1}{x^{2}}\right) \frac{1}{\sqrt{2 \pi x^{2}}} e^{-\frac{x^{2}}{2}} \tag{21}
\end{align*}
$$

(d) Let $t=y+x$, and we have

$$
Q(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}} \int_{0}^{\infty} e^{\frac{-y^{2}}{2}-x y} d y
$$

It is obvious that

$$
e^{\frac{-y^{2}}{2}} \leq 1
$$

By mean value theorem and taylor expansion for some positive value y_{*}, we have

$$
e^{\frac{-y^{2}}{2}}=1-\frac{y^{2}}{2}+\frac{y_{*}^{4}}{8} \geq 1-\frac{y^{2}}{2}
$$

We know

$$
\int_{0}^{\infty} e^{-x y} d y=\frac{1}{x}
$$

and

$$
\int_{0}^{\infty} \frac{y^{2}}{2} e^{-x y} d y=\frac{1}{x^{3}}
$$

Putting these facts together will give the bounds.
(e) We have

$$
\operatorname{Pr}\left(\left|x_{1}\right| \leq x,\left|x_{2}\right| \leq x\right)=\operatorname{Pr}\left(\left|x_{1}\right| \leq x\right) \operatorname{Pr}\left(\left|x_{2}\right| \leq x\right)=(1-2 Q(x))^{2}
$$

(f) We have

$$
\operatorname{Pr}\left(\left|x_{1}\right|^{2}+\left|x_{2}\right|^{2} \leq x\right)=\int_{0}^{2 \pi} \int_{0}^{x} \frac{1}{2 \pi} e^{-\frac{r^{2}}{2}} r d r d \theta=1-e^{-\frac{x^{2}}{2}} .
$$

(g) Circle is contained in the square and we ignore $Q^{2}(x)$. We have the result.

Problem 3. A baseband-equivalent waveform ($\omega_{c}>2 \pi$)

$$
\tilde{x}_{b b}(t)=\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t)
$$

is convolved with the complex filter

$$
w_{1}(t)=\delta(t)-j \delta(t-1)
$$

$$
\begin{equation*}
y(t)=\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t)-j\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t-1) \tag{1}
\end{equation*}
$$

$$
\begin{align*}
z(t) & =w_{2}(t) * y(t) \tag{22}\\
& =2 j \operatorname{sinc}(t) *\left(\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t)-j\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t-1)\right) \tag{23}\\
& =2 j\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t)+2\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t-1)
\end{align*}
$$

(3) We have

$$
z_{b b}(t)=2 j\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t)+2\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t-1)
$$

and

$$
\tilde{x}_{b b}(t)=\left(x_{1}+j x_{2}\right) \operatorname{sinc}(t)
$$

and

$$
\tilde{w}(t)=h_{b b}(t)=4 \operatorname{sinc}(t-1)+j 4 \operatorname{sinc}(t) .
$$

, which satify the equation

$$
z_{b b}(t)=x_{b b}(t) * \frac{1}{2} h_{b b}(t)
$$

Problem 4. For mapping one we have

$$
P_{b}=\frac{3}{2} Q\left(\frac{d}{2 \sigma}\right)
$$

and for mapping two

$$
P_{b}=Q\left(\frac{d}{2 \sigma}\right)
$$

Problem 5. (a)

$$
f_{V \mid U}(\mathbf{v} \mid a)=\frac{1}{\left(\pi N_{0}\right)^{n}} e^{\frac{-\|\mathbf{v}-a\| \|^{2}}{N_{0}}}
$$

and

$$
f_{V \mid U}(\mathbf{v} \mid-a)=\frac{1}{\left(\pi N_{0}\right)^{n}} e^{-\|\mathbf{v}+a\|^{2}} \frac{N_{0}}{2}
$$

(b)

$$
\operatorname{LLR}(\mathbf{v})=\log \frac{f_{V \mid U}(\mathbf{v} \mid-a)}{f_{V \mid U}(\mathbf{v} \mid a)}=\frac{-\|\mathbf{v}-\mathbf{a}\|^{2}+\|\mathbf{v}+\mathbf{a}\|^{2}}{N_{0}}
$$

(c) ML rule is comparing LLR to the constant zero and because LLR depends on difference of distance of channel output to vectors a and $-a$, ML is a minimum distance detector.
(d)

$$
\|\mathbf{v}-\mathbf{a}\|^{2}=\|\mathbf{v}\|^{2}-2\langle\mathbf{v}, \mathbf{a}\rangle+\|\mathbf{a}\|^{2}
$$

and

$$
\|\mathbf{v}+\mathbf{a}\|^{2}=\|\mathbf{v}\|^{2}+2\langle\mathbf{v}, \mathbf{a}\rangle+\|\mathbf{a}\|^{2}
$$

By substituting in (c) one gets the result.
(e) In the detection, only the real part of the $\langle\mathbf{v}, \mathbf{a}\rangle$ matters and it is important if it is positive or negative, but $|\mathbf{v}, \mathbf{a}|$ preserves none of the above.
(f) No, if v is in this space $c v$ can be out of the space.

