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Problem 1.

(a) (1) Additive noise: This model is one in which the impairment to the signal is an
addition of a noise, a stochastic process independent of the signal.

(2) Distortion: A distortion is the alteration of the original shape (or other charac-
teristic) of a waveform or other form of information or representation. In general
a noise-free system can be characterized by a transfer function, such that the
output y(t) can be written as a function of the input x(t) as

y(t) = F (x(t)).

This form is memoryless distortion.

(3) Interference: Interference is anything which alters, modifies, or disrupts a signal
as it travels along a channel between a source and a receiver. The term typically
refers to the addition of unwanted signals from other transmitters to a useful
signal.

(4) Fading: Fading is the random attenuation that a carrier-modulated signal ex-
periences over certain propagation media. The fading may vary with time,
geographical position and/or radio frequency, and is often modeled as a random
process. A fading channel is a communication channel that experiences fading.
In wireless systems, fading may either be due to multipath propagation, referred
to as multipath induced fading, or due to shadowing from obstacles affecting the
wave propagation, sometimes referred to as shadow fading.

(5) Doppler shift: It is the change that occurs in the frequency of a wave for an
observer with a non-zero relative velocity to the source.

All channels are energy and bandwidth limited, but note that some channels are
more restrictive on one area than the other. In general channels may be classified as
bandwidth or energy limited according to whether they permit transmission at high
spectral efficiency or not. There is no sharp line, but usually we could take spectral
efficiency 2 (b/s)/Hz as the boundary, corresponding to the highest spectral efficiency
that can be achieved with binary transmission.

(i) In this region, the capacity (achievable spectral efficiency) increases linearly
with SNR. In these kind of channel, we will be able to use binary coding and
modulation.

(ii) In this region, the capacity (achievable spectral efficiency) increases logarithmic
with SNR. In these kind of channels, we must use non-binary (multilevel)
modulation.

(b) (1) Wireline channels (non-optical): Additive noise, Interference and Bandwidth
limited

(2) Optical channels: Low attenuation, high bandwidth. No Interference



(3) Deep space satellite channels: Additive noise, Energy limited

(4) Microwave links: Line of sight links so no Interference, distortion and not much
fading, High power

(5) Underwater acoustic channels:Additive background noise, distortion and doppler
shift, fading and band limited

(6) Cellphone wireless communication channels: Additive noise, fading, doppler
shift, interference, energy limited, bandwidth limited

Problem 2. pVW (v, w).

(a)

E(V +W ) =

∫∫
(v + w) pVW (v, w) dv dw (1)

=

∫∫
(vpVW (v, w) + wpVW (v, w)) dv dw (2)

=

∫∫
vpVW (v, w) dv dw +

∫∫
wpVW (v, w) dv dw (3)

=

∫
v

∫
pVW (v, w) dw dv +

∫
w

∫
pVW (v, w) dv dw (4)

=

∫
vpV (v) dv +

∫
wpW (w) dw (5)

= E(V ) + E(W ) (6)

(b)

E(V ·W ) =

∫∫
(v · w) pVW (v, w) dv dw (7)

=

∫∫
(v · w) pV (v) pW (w) dv dw (8)

=

∫
vpV (v) dv ·

∫
wpW (w) dw (9)

= E(V ) · E(W ) (10)

(c) Assume V = W and Pr(V = 1) = Pr(V = −1) = 1
2
. We compute E(V ) = E(W ) = 0

and E(VW ) = 1, so E(VW ) 6= E(V )E(W )

Now suppose (V,W ) takes values of (1, 1), (1,−1), (−1, 1), (−1,−1), (0, 0) with equal
probability 1

5
. Because Pr(W = 0|V = 1) = 0 6= 1

5
= Pr(W = 0), V and W are

not independent. We compute E(V ) = E(W ) = 0 and E(VW ) = 0, so E(VW ) =
E(V )E(W )

(d) Assume that V and W are independent and let σ2
V and σ2

W be the variances of V and
W , respectively. Show that the variance of V +W is given by σ2

V+W = σ2
V + σ2

W .

σ2
V+W = E

(
(V +W )2

)
− E ((V +W ))2 (11)

= E(V 2) + E(W 2) + 2E(VW )− (E(V ) + E(W ))2 (12)

= E(V 2) + E(W 2) + 2E(V )E(W )− E(V )2 − E(W )2 − 2E(V )E(W )(13)

= E(V 2)− E(V )2 + E(W 2)− E(W )2 (14)

= σ2
V + σ2

W (15)
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Problem 3.

(a)

∑
n>0

Pr(N ≥ n) =
∞∑
n=1

∞∑
m=n

Pr(N = m) (16)

=
∞∑
m=1

m∑
n=1

Pr(N = m) (17)

=
∞∑
m=1

mPr(N = m) (18)

= E(N) (19)

(b) ∫ ∞
0

Pr(x ≥ a) da =

∫ ∞
0

∫ ∞
a

fx(t) dt da (20)

=

∫ ∞
0

∫ t

0

fx(t) da dt (21)

=

∫ ∞
0

t fx(t) dt (22)

= E(X) (23)

(c) The main point is to note that G(t) = P (X ≥ t) is a non-increasing function of t.
So for any fixed value of a > 0, the rectangle between point (0, 0) and (a,G(a)) lies
below the function G(t). In conclusion, it follows from the discussion above that

aG(a) ≤
∫ a

0

G(a) dt ≤
∫ a

0

G(t) dt ≤
∫ ∞

0

G(t) dt,

which means
aPr(X ≥ a) ≤ E(X)

(d) Assume
X = (Y − E(Y ))2 X ≥ 0

Using part (c), we have
aPr(X ≥ a) ≤ E(X).

Therefore, one could conclude that

aPr
(
(Y − E(Y ))2 ≥ a

)
≤ E

(
(Y − E(Y ))2

)
.

Setting b =
√
a, we have

Pr
(
|Y − E(Y )| ≥ b

)
= Pr

(
(Y − E(Y ))2 ≥ b2

)
≤
E
(
(Y − E(Y ))2

)
b2

=
σ2
Y

b2
.

Problem 4.
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(a) Pr(X1 ≤ X2) = 1
2
. We know because of independence we have, fX1,X2(x1, x2) =

fX1(x1)fX2(x2), and we want to find the probability of x1 being minimum of two.
This event partitions the probability space into two equal sub-sets, the other one is x2

being the minimum of the two. The only problem is the boundary line x1 = x2, which
we assume is a part of first sub-set, but because fx is a continuous random variable the
line x1 = x2 has zero probability mass and because fX1(x1)fX2(x2) is symmetric with
respect to the line x1 = x2, we conclude that the event min(x1, x2) = x1 partitions
the whole probability space into two equally probable regions.

(b) Pr(X1 ≤ X2;X1 ≤ X3) = 1
3
; We follow the exact same argument as the part (a), this

time the probability space is partitioned into three equally probable sub-sets, in each
of sub-sets one of the three random variable is minimum.

(c) Similar to last parts, we can show that

Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1;X1 ≤ Xn) =
1

n

and

Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1) =
1

n− 1

We know

Pr(N = n) = Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1;X1 > Xn) (24)

= Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1)

−Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1;X1 ≤ Xn) (25)

=
1

n− 1
− 1

n
=

1

n2 − n
. n > 1 (26)

Using properties of telescopic series, we conclude

Pr(N ≥ n) =
∞∑
m=n

Pr(N = m) (27)

=
1

n− 1
− 1

n
+

1

n
− 1

n+ 1
+ . . . (28)

=
1

n− 1
. n ≥ 2 (29)

(d) We use part (a) of Problem 3.

E(N) =
∑
n>0

Pr(N ≥ n) =
∑
n>1

1

n− 1
→∞

(We know that series 1
n

is divergent.)

(e) The symmetry of the fX1(x1)fX2(x2) still holds because of independence but in the
discrete case it is possible to put some probability mass on line x1 = x2. Therefore in
the discrete case the event x1 ≤ x2 does not partition the whole probability space into
two equally probable sub-spaces. The same as before we can conclude that Pr(X1 <
X2) = Pr(X2 < X1). We know Pr(X1 < X2) + Pr(X1 = X2) + Pr(X2 < X1) = 1.
From these two we conclude that Pr(X1 ≤ X2) ≥ 1

2
. Similarly we conclude that

Pr(X1 ≤ X2;X1 ≤ X3; . . . ;X1 ≤ Xn−1;X1 ≤ Xn) ≥ 1

n
.

4



Following the steps in part (d), we can show that

E(N) ≥
∑
n>1

1

n− 1
→∞

Problem 5. Let’s consider the case where n = 2 first, we have

P (Z = 0) = P (X1 ⊕X2 = 0) = P (X1 = 0, X2 = 0) + P (X1 = 1, X2 = 1) =
1

2
,

in which we used independence of X1 and X2.
By induction, one could easily show that for arbitrary n, we have

P (Z = 0) =
1

2
.

(a)

P (Z = z|X1 = x1) = P (X1 ⊕X2 ⊕ · · · ⊕Xn = z|X1 = x1) (30)

= P (X2 ⊕ · · · ⊕Xn = z ⊕ x1|X1 = x1) (31)

= P (X2 ⊕ · · · ⊕Xn = z ⊕ x1) (32)

=
1

2
= P (Z = z) (33)

in (32) we used that Xi’s are independent. We conclude that Z is independent of X1

(b)

P (Z = z|X1, . . . , Xn−1 = x1, . . . , xn−1) = (34)

P (X1 ⊕X2 ⊕ · · · ⊕Xn = z|X1, . . . , Xn−1 = x1, . . . , xn−1) = (35)

P (Xn = z ⊕ x1 ⊕ · · · ⊕ xn−1|X1, . . . , Xn−1 = x1, . . . , xn−1) = (36)

P (Xn = z ⊕ x1 ⊕ · · · ⊕ xn−1) = (37)

=
1

2
(38)

= P (Z = z) (39)

in (37) we used that Xi’s are independent. We conclude that Z is independent of
X1, . . . , Xn−1.

(c) No, Z is a deterministic function of X1, . . . , Xn, which means

P (Z = z|X1, . . . , Xn = x1, . . . , xn)

is either 0 or 1 depending on the values of x1, . . . , xn and z.

(d) Suppose Pr(Xi = 1) = 3
4
, we have

P (Z = 0) = P (X1⊕X2 = 0) = P (X1 = 0, X2 = 0)+P (X1 = 1, X2 = 1) =
9 + 1

16
=

5

8
.

but

P (Z = 0|X1 = 0) = P (X1 ⊕X2 = 0|X1 = 0) (40)

= P (X2 = 0|X1 = 0) (41)

=
1

4
6= 5

8
= P (Z = 0), (42)

in which we used that X1 and X2 are independent. We conclude that Z is not
independent of X1.
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Problem 6. (1)

V (π0) = π0 Pr(error|H0) + (1− π0) Pr(error|H1) (43)

= π0

∫
RH0

Pr(y|H0) dy + (1− π0)

∫
R\RH0

Pr(y|H1) dy, (44)

where we define

RH0 = {y ∈ R|π0 Pr(y|H0) ≥ (1− π0) Pr(y|H1)}.

(2) We define
Rπ0 = {y ∈ R|π0 Pr(y|H0) ≥ (1− π0) Pr(y|H1)}.

and
Rπ′0

= {y ∈ R|π′0 Pr(y|H0) ≥ (1− π′0) Pr(y|H1)}.

We know that these regions are optimal decision regions for V (π0) and V (π′0), re-
spectively, which means they minimize V for the given prior among all other decision
regions. Now, we define

Rλπ0+(1−λ)π′0
= {y ∈ R|(λπ0 +(1−λ)π′0) Pr(y|H0) ≥ (1−(λπ0 +(1−λ)π′0)) Pr(y|H1)},

and we conclude that

V (π0) = π0

∫
Rπ0

Pr(y|H0) dy + (1− π0)

∫
R\Rπ0

Pr(y|H1) dy (45)

≤ π0

∫
Rλπ0+(1−λ)π′0

Pr(y|H0) dy + (1− π0)

∫
R\Rλπ0+(1−λ)π′0

Pr(y|H1) dy,(46)

and

V (π′0) = π′0

∫
Rπ′0

Pr(y|H0) dy + (1− π′0)
∫
R\Rπ′0

Pr(y|H1) dy (47)

≤ π′0

∫
Rλπ0+(1−λ)π′0

Pr(y|H0) dy + (1− π′0)
∫
R\Rλπ0+(1−λ)π′0

Pr(y|H1) dy,(48)

In (46) and (48), we used the fact that Rπ0 and Rπ′0
minimize V for the given prior

among all other decision regions. Multiplying (46) by λ and (48) by 1−λ and adding
them up, we will have

λV (π0) + (1− λ)V (π′0) ≤ (λπ0 + (1− λ)π′0)

∫
Rλπ0+(1−λ)π′0

Pr(y|H0) dy

+(1− (λπ0 + (1− λ)π′0))

∫
R\Rλπ0+(1−λ)π′0

Pr(y|H1) dy,

= V (λπ0 + (1− λ)π′0) (49)

(3) Concavity implies that V is continuous on [0, 1] and the minimum is on the boundary
and for a given prior πmax, most likely in the interior of ]0, 1[(unless V is a linear
function), V is maximized over all π ∈ [0, 1].
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Problem 7. We define
C(xi) = 2σ2 log Pr(xi)

It is easy to show that for the optimal decision maker (MAP) in Gaussian noise, the detector
finds xi so that

〈xi, xi〉 − 2〈y, xi〉 − C(xi)

is minimized.
We know the following for any j 6= i

〈xi, xi〉 − 2〈y1, xi〉 − C(xi) ≤ 〈xj, xj〉 − 2〈y1, xj〉 − C(xj) (50)

〈xi, xi〉 − 2〈y2, xi〉 − C(xi) ≤ 〈xj, xj〉 − 2〈y2, xj〉 − C(xj). (51)

Now let us consider the following,

〈xi, xi〉 − 2〈αy1 + (1− α)y2, xi〉 − C(xi) = 〈xi, xi〉 − 2α〈y1, xi〉
−2(1− α)〈y2, xi〉 − C(xi)

= α
[
〈xi, xi〉 − 2〈y1, xi〉 − C(xi)

]
+

(1− α)
[
〈xi, xi〉 − 2〈y2, xi〉 − C(xi)

]
≤ α

[
〈xj, xj〉 − 2〈y1, xj〉 − C(xj)

]
+

(1− α)
[
〈xj, xj〉 − 2〈y2, xj〉 − C(xj)

]
.

In the last step we used 50 and 51. We conclude

〈xi, xi〉 − 2〈αy1 + (1− α)y2, xi〉 − C(xi) ≤ 〈xj, xj〉 − 2〈αy1 + (1− α)y2, xj〉 − C(xj)

for all j 6= i. Therefore, the decoder decodes αy1 + (1− α)y2 as xi.

Problem 8. Based on what we learned in the class, we find the optimal decision region
as follows,

R−3 = {y ∈ R|π−3 Pr(y| − 3) > π3 Pr(y|3)},
which simplifies to

2

3
Pr(z = y + 3) >

1

3
Pr(z = y − 3) (52)

2

3

1

π(1 + (y + 3)2)
>

1

3

1

π(1 + (y − 3)2)
(53)

2y2 − 12y + 20 > y2 + 6y + 10 (54)

y2 − 18y + 10 > 0. (55)

Therefore, we have
R−3 = {y ∈ R|y ≥ 17.4 or y ≤ 0.57},

and
R3 = {y ∈ R|0.57 ≤ y ≤ 17.4}.

Note that R−3 is not convex!
The error probability is

Pe =
1

3

∫ −2.43

−∞

1

π(1 + z2)
dz +

1

3

∫ ∞
14.4

1

π(1 + z2)
dz +

2

3

∫ 20.4

3.57

1

π(1 + z2)
dz (56)

=
1

3

(
1−

∫ 14.4

−2.43

1

π(1 + z2)
dz
)

+
2

3

∫ 20.4

3.57

1

π(1 + z2)
dz. (57)
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For Gaussian noise we have

R−3 = {y ∈ R|π−3 Pr(y| − 3) > π3 Pr(y|3)},

which simplifies to

2

3
Pr(z = y + 3) >

1

3
Pr(z = y − 3) (58)

2

3

1√
2π
e−

(y+3)2

2 >
1

3

1√
2π
e−

(y−3)2

2 (59)

ln(2) > 6y (60)

ln(2)

6
> y. (61)

Therefore, we have

R−3 = {y ∈ R|y < ln(2)

6
= 0.1155},

and
R3 = {y ∈ R|y > 0.1155}.

The error probability is

Pe =
1

3
Q(3− 0.1155) +

2

3
Q(3 + 0.1155) = 0.0013.
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