ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 16	Advanced Digital Communications
Homework 8	November 23, 2009

PROBLEM 1. Consider the channel

$$y(k) = ||p||x(k) * q(k) + z(k),$$

where $q(k) = \delta(k) + b\delta(k-1) + b\delta(k+1)$ and z(k) is zero-mean Gaussian noise with power spectral density (PSD) $S_z(D) = N_0Q(D)$. Assume that

$$b = \sqrt{\frac{N_0}{\mathcal{E}_x ||p||^2}} = \frac{1}{2}.$$

Remember that by definition, $SNR_{MFB} = \frac{\mathcal{E}_x ||p||^2}{N_0}$.

- (a) We first consider a zero-forcing equalizer (**ZFE**).
 - (i) Draw the block diagram of this equalizer.
 - (ii) Give $W_{ZFE}(D)$. Find the poles of this function. Is W_{ZFE} a stable filter?
 - (iii) Can you compute the noise variance per real dimension $\bar{\sigma}_{ZFE}^2$? From your observation in (ii), you should be able to predict the behaviour of $\bar{\sigma}_{ZFE}^2$.
 - (iv) Give the value of SNR_{ZFE} . What does this value mean?

(b) Now we consider a minimum-mean-squared-error linear equalizer (MMSE-LE).

- (i) What is the block diagram for this equalizer?
- (ii) Give $W_{MMSE-LE}(D)$. Hint.

$$W_{MMSE-LE}(D) = \frac{||p||\mathcal{E}_x}{||p||^2 Q(D)\mathcal{E}_x + N_0}$$

(iii) Write down V(D) as defined below and compute v(k).

Hint. You will have to decompose V(D) into its causal and anticausal part. Make sure that the region of convergence (ROC) of V(D) contains the unit circle. Define

$$R(D) = W_{MMSE-LE}(D)Y(D)$$

and define V(D) such that

$$R(D) = (1 - V(D))X(D) + Z'(D),$$

writing in time domain will yield

$$r_k = x_k + v_0 x_k + \sum_{n \neq 0} v_n x_{k-n} + z'_k$$

redefining

$$r_k = (1 - v_0)x_k + e'_k$$

(iv) Compute the unbiased $SNR_{MMSE-LE,U}$. How does this compare to SNR_{ZFE} ? Hint. We define

$$SNR_{MMSE-LE,U} = \frac{1}{v_0} - 1$$

This is because, one can compute

$$S_{EE}(D) = \mathcal{E}_x V(D)$$

and hence,

$$E(|e_k|^2) = \mathcal{E}_x v_0$$

and

$$E(|e'_k|^2) = E(|e_k|^2) - \mathcal{E}_x v_0^2$$

- (c) Now we consider minimum-mean-squared-error decision-feedback equalization (MMSE-DFE).
 - (i) Draw the block diagram for a MMSE-DFE equalizer.
 - (ii) Write down $Q(D) + \frac{1}{SNR_{MFB}}$ and show that this expression can be factorized as $\gamma_0 G(D)G^*(D^{-*})$. Find the causal monic function G(D) as well as γ_0 . Make sure $\frac{1}{G(D)}$ is stable (ROC must contain the unit circle).
 - (iii) What is the optimal feedbackward filter $B_{opt}(D)$? Hint. 1 - B(D) is feedbackward filter, hence B(D) is causal and monic, i.e.,

$$B(D) = 1 + b_1 D + b_2 D^2 + \dots$$

and if

$$Q(D) + \frac{1}{\text{SNR}_{\text{MFB}}} = \gamma_0 G(D) G^*(D^{-*})$$

in which G(D) is monic and causal and $G^*(D^{-*})$ is monic and anti-causal, then

$$B_{\rm opt}(D) = G(D):$$

(iv) What is the optimal feedforward filter $W_{\text{opt}}(D)$? Hint.

$$W_{\text{opt}}(D) = B_{\text{opt}}(D)W_{MMSE-LE}(D)$$

(v) Write down V(D) as defined below similar to previous part (for MMSE-DFE). Hint.

$$V(D) = \frac{\overline{SNR_{MFB}}}{\gamma_0 G^*(D^{-*})}$$

(vi) Using hint below, compute v(0).

Hint. $G^*(D^{-*})$ is monic and anti-causal, therefore so is $\frac{1}{G^*(D^{-*})}$, so

$$v_0 = \frac{1}{SNR_{MFB}} \frac{1}{\gamma_0}$$

(vii) Finally, give the unbiased signal-to-noise ratio $SNR_{MMSE-DFE,U}$. *Hint.* We define

$$SNR_{MMSE-DFE,U} = \frac{1}{v_0} - 1$$

(viii) Compare this signal-to-noise ratio to $SNR_{MMSE-LE,U}$.

Problem 2.

(a) For the channel of problem 2, homework 7, show that the canonical factorization is

$$Q(D) + \frac{1}{\text{SNR}_{\text{MFB}}} = \gamma_0 (1 - r_2 D^{-1}) (1 - r_2^* D).$$

What is γ_0 in terms of a and b? Please do not do this from scratch. You have done much of the work for this in problem 2, HW7.

- (b) Find B(D) and W(D) for the MMSE DFE.
- (c) Give an expression for $\gamma_{\text{MMSE-DFE}}$ MMSE-DFE. Compute its values for a = 0, .5, 1 for the $E_x = 1$ and $\sigma^2 = 0.1$ Sketch $\gamma_{\text{MMSE-DFE}}$ as in problem 2, HW7. Compare with your sketches from problem 2, HW7.

Hint.

 $\gamma_{\rm ZFE} = 10 \log_{10} \frac{\rm SNR_{\rm MFB}}{\rm SNR_{\rm MMSE-DFE}}$