ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Hint. We considered both discrete Fourier transform and D-transform in the class. In terms of Fourier transform we derived that the power spectral densities of input z_{k} and output \hat{z}_{k} of the filter g_{k} satisfy the following:

$$
\hat{S}(\theta)=|G(\theta)|^{2} S(\theta)
$$

where

$$
\begin{aligned}
R_{k} & =E\left[Z_{j} Z_{j+k}^{*}\right] \\
S(\theta) & =\sum_{k} R_{k} e^{-j 2 \pi \theta k} \\
E\left[\left|z_{k}\right|^{2}\right] & =\int_{-\frac{1}{2}}^{\frac{1}{2}} S(\theta) d \theta
\end{aligned}
$$

These formulas translate to the following in terms of D-transform,

$$
S_{\hat{Z}}(D)=G(D) G^{*}\left(D^{-*}\right) S_{Z}(D)
$$

where

$$
\begin{aligned}
R_{k} & =E\left[Z_{j} Z_{j+k}^{*}\right] \\
S_{Z}(D) & =\sum_{k} R_{k} D^{k} \\
E\left[\left|z_{k}\right|^{2}\right] & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} S_{Z}\left(e^{-j \omega}\right) d \omega
\end{aligned}
$$

Problem 1. Suppose we have a linear time invariant channel, i.e.,

$$
Y(D)=\|p\| Q(D) X(D)+Z(D) ;
$$

with $Q(D)=Q^{*}\left(D^{-*}\right)$. Also there is another process $U(D)=H(D) X(D)$; which we want to estimate.
(a) Given observations $\left\{y_{k}\right\}$, find the linear estimator

$$
\hat{U}(D)=W(D) Y(D)
$$

which minimizes the mean-squared error, i.e.,

$$
W(D)=\operatorname{argmin}_{W(D)} E\left\|u_{k}-\hat{u}_{k}\right\|^{2}
$$

You can assume that $\left\{X_{k}\right\}$ and $\left\{Z_{k}\right\}$ are independent and that

$$
S_{x}(D)=E_{x}
$$

and

$$
S_{z}(D)=N_{0} Q(D)
$$

(b) Given the optimum linear MMSE estimator given in part (a) we define the error as

$$
e_{k}=u_{k}-\hat{u}_{k}
$$

. Find the power spectral density of $\left\{e_{k}\right\}, S_{E}(D)$.
(c) If $H(D)=1$, can you comment on the operation performed in part (a)?

Problem 2. Suppose we have a linear time invariant channel, i.e.,

$$
Y(D)=\|p\| Q(D) X(D)+Z(D) ;
$$

with

$$
\begin{aligned}
\|p\|^{2} & =1+a a^{*} \\
Q(D) & =\frac{a^{*} D^{-1}+\|p\|^{2}+a D}{\|p\|^{2}} \\
0 \leq|a| & <1
\end{aligned}
$$

(a) Find the zero forcing and minimum mean square error linear equalizers $W_{\text {ZFE }}(D)$ and $W_{\text {MMSE-LE }}(D)$. Use the variable $b=\|p\|^{2}\left(1+\frac{1}{\text { SNR }_{\text {MFB }}}\right)$ in your expression for $W_{\text {MMSE-LE }}(D)$.
Hint.

$$
\mathrm{SNR}_{\mathrm{MFB}}=\frac{\|p\|^{2} E_{x}}{N_{0}}
$$

Can you explain why?
(b) By substituting $e^{-j \omega}=D$ and taking $\operatorname{SNR}_{\mathrm{MFB}}=10\|p\|^{2}$, use Matlab to plot (lots of samples of) $W\left(e^{j \omega}\right)$ for both ZFE and MMSE-LE for $a=.5$ and $a=.9$. Discuss the differences between the plots.
(c) Find the roots r_{1}, r_{2} of the polynomial

$$
a D^{2}+b D+a^{*} .
$$

Show that $b^{2}-4 a a^{*}$ is always a real positive number (for $|a| \neq 1$).
Hint. Consider the case where $\frac{1}{\operatorname{SNR}_{\mathrm{MFB}}}=0$. Let r_{2} be the root for which $\left|r_{2}\right|<\left|r_{1}\right|$. Show that $r_{1} r_{2}^{*}=1$.
(d) Use the previous results to show that for the MMSE-LE

$$
W(D)=\frac{\|p\|}{a} \frac{D}{\left(D-r_{1}\right)\left(D-r_{2}\right)}=\frac{\|p\|}{a\left(r_{1}-r_{2}\right)}\left(\frac{r_{1}}{D-r_{1}}-\frac{r_{2}}{D-r_{2}}\right) .
$$

(e) Show that for the MMSE-LE, $w_{0}=\frac{\|p\|}{\sqrt{b^{2}-4 a a^{*}}}$. By taking $\frac{1}{\operatorname{SNR}_{\mathrm{MFB}}}=0$, show that for the ZFE, $w_{0}=\frac{\|p\|}{1-4 a a^{*}}$.
(f) For $E_{x}=1$ and $\sigma^{2}=0.1$ find expressions for $\sigma_{\mathrm{ZFE}}^{2}, \sigma_{\mathrm{MMSE}-\mathrm{LE}}^{2}, \gamma_{\mathrm{ZFE}}$ and $\gamma_{\mathrm{MMSE}-\mathrm{LE}}$ Hint.

$$
\gamma_{\mathrm{ZFE}}=10 \log _{10} \frac{\mathrm{SNR}_{\mathrm{MFB}}}{\mathrm{SNR}_{\mathrm{ZFE}}}
$$

and

$$
\gamma_{\mathrm{MMSE-LE}}=10 \log _{10} \frac{\mathrm{SNR}_{\mathrm{MFB}}}{\mathrm{SNR}_{\mathrm{MMSE-LE}}}
$$

(g) Find $\gamma_{\text {ZFE }}$ and $\gamma_{\text {MMSE-LE }}$ in terms of the paramter a and calculate for $a=0,0.5,1$. Sketch γ_{ZFE} and $\gamma_{\mathrm{MMSE-LE}}$ for $0 \leq a<1$.

