ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 8
Homework 5
Advanced Digital Communications

Problem 1. (Amplitude-limited functions) Sometimes it is important to generate baseband waveforms with bounded amplitude. This problem explores pulse shapes that can accomplish this
(a) Find the Fourier transform of $g(t)=\operatorname{sinc}^{2}(2 W t)$. Show that $g(t)$ is bandlimited to $f \leq W$ and sketch both $g(t)$ and $\hat{g}(f)$. [Hint. Recall that multiplication in the time domain corresponds to convolution in the frequency domain.]
(b) Let $u(t)$ be a continuous real \mathcal{L}_{2} function baseband-limited to $f \leq W$ (i.e. a function such that $u(t)=\sum_{k} u(k T) \operatorname{sinc}\left(\frac{t}{T}-k\right)$, where $T=\frac{1}{2 W}$. Let $v(t)=u(t) * g(t)$. Express $v(t)$ in terms of the samples $\{u(k T) ; k \in \mathcal{Z}\}$ of $u(t)$ and the shifts $\{g(t-k T) ; k \in \mathcal{Z}\}$ of $g(t)$. [Hint. Use your sketches in part (a) to evaluate $g(t) * \operatorname{sinc}\left(\frac{t}{T}\right)$.]
(c) Show that if the T-spaced samples of $u(t)$ are nonnegative, then $v(t) \geq 0$ for all t.
(d) Explain why $\sum_{k} \operatorname{sinc}\left(\frac{t}{T}-k\right)=1$ for all t.
(e) Using (d), show that $\sum_{k} g\left(\frac{t}{T}-k\right)=c$ for all t and find the constant c. [Hint. Use the hint in (b) again.]
(f) Now assume that $u(t)$, as defined in part (b), also satisfies $u(k T) \leq 1$ for all $k \in \mathcal{Z}$. Show that $v(t) \leq 2$ for all t.
(g) Allow $u(t)$ to be complex now, with $|u(k T)| \leq 1$. Show that $v(t) \leq 2$ for all t.

Problem 2. (Orthogonal sets) The function $\operatorname{rect}\left(\frac{t}{T}\right)$ has the very special property that it, plus its time and frequency shifts, by $k T$ and $\frac{j}{T}$, respectively, form an orthogonal set. The function $\operatorname{sinc}\left(\frac{t}{T}\right)$ has this same property. We explore other functions that are generalizations of $\operatorname{rect}\left(\frac{t}{T}\right)$ and which, as you will show in parts (a)-(d), have this same interesting property. For simplicity, choose $T=1$.

These functions take only the values 0 and 1 and are allowed to be nonzero only over $[-1,1]$ rather than $\left[-\frac{1}{2}, \frac{1}{2}\right]$ as with $\operatorname{rect}\left(\frac{t}{T}\right)$. Explicitly, the functions considered here satisfy the following constraints:

$$
\begin{array}{ccl}
p(t)= & p^{2}(t) & \text { for all } t \quad(0 / 1 \text { property }) \\
p(t)= & 0 & \text { for }|t|>1 \\
p(t)= & p(-t) & \text { for all } t \quad \text { (symmetry); } \\
p(t)= & 1-p(t-1) & \text { for } 0 \leq t \leq 1 / 2 \tag{4}
\end{array}
$$

Note: because of property (3), condition (4) also holds for $\frac{1}{2}<t \leq 1$.
Note also that $p(t)$ at the single points $t= \pm \frac{1}{2}$ does not affect any orthogonality properties, so you are free to ignore these points in your arguments.
(a) Show that $p(t)$ is orthogonal to $p(t-1)$.

Hint. Evaluate $p(t) p(t-1)$ for each $t \in[0,1]$ other than $t=\frac{1}{2}$.
(b) Show that $p(t)$ is orthogonal to $p(t-k)$ for all integer $k \neq 0$
(c) Show that $p(t)$ is orthogonal to $p(t-k) e^{j 2 \pi m t}$ for integer $k \neq 0$ and $m \neq 0$.
(d) Show that $p(t)$ is orthogonal to $p(t) e^{j 2 \pi m t}$ for integer $m \neq 0$.

Hint. Evaluate $p(t) e^{j 2 \pi m t}+p(t-1) e^{j 2 \pi m(t-1)}$.
(e) Let $h(t)=\hat{p}(t)$ where $\hat{p}(f)$ is the Fourier transform of $p(t)$. If $p(t)$ satisfies properties (1) - (4), does it follow that $h(t)$ has the property that it is orthogonal to $h(t-k) e^{j 2 \pi m t}$ whenever either the integer k or m is nonzero?

Note: almost no calculation is required in this problem.
Problem 3. Consider estimating the real zero-mean scalar x from:

$$
\mathbf{y}=\mathbf{h} x+\mathbf{w}
$$

where $\mathbf{w} \sim \mathrm{N}\left(0, \frac{N_{0}}{2} \mathbf{I}\right)$ is uncorrelated with x and h is a fixed vector in \mathcal{R}^{n}.
(a) Consider the scaled linear estimate $\mathbf{c}^{t} \mathbf{y}$ (with the normalization $\|\mathbf{c}\|=1$):

$$
\begin{equation*}
\hat{x}=a \mathbf{c}^{t} \mathbf{y}=\left(a \mathbf{c}^{t} \mathbf{h}\right) x+a \mathbf{c}^{t} \mathbf{z} \tag{5}
\end{equation*}
$$

Show that the constant a that minimizes the mean square error $(x-\hat{x})^{2}$ is equal to

$$
\begin{equation*}
\frac{\mathbb{E}\left[x^{2}\right]\left|\mathbf{c}^{t} \mathbf{h}\right|}{\mathbb{E}\left[x^{2}\right]\left|\mathbf{c}^{t} \mathbf{h}\right|^{2}+\frac{N_{0}}{2}} \tag{6}
\end{equation*}
$$

(b) Calculate the minimal mean square error (denoted by MMSE) of the linear estimate in (5) (by using the value of a in (6)). Show that

$$
\begin{equation*}
\frac{\mathbb{E}\left[x^{2}\right]}{\mathrm{MMSE}}=1+\mathrm{SNR}=1+\frac{\mathbb{E}\left[x^{2}\right]\left|\mathbf{c}^{\mathbf{t}} \mathbf{h}\right|^{2}}{\frac{N_{0}}{2}} \tag{7}
\end{equation*}
$$

For every fixed linear estimator \mathbf{c}, this shows the relationship between the corresponding SNR and MMSE (of an appropriately scaled estimate).
(c) In particular, relation (7) holds when we optimize over all cleading to the best linear estimator. Find the value of vector \mathbf{c} (with the normalization $\|\mathbf{c}\|=1$) by minimizing the MMSE derived in part (b). Compute optimal MMSE.
Hint. Use Cauchy-Schwarz inequality.
Problem 4. (Linear Estimation) Consider the additive noise model given below,

$$
\begin{align*}
& Y_{1}=X+Z_{1} \tag{8}\\
& Y_{2}=X+Z_{2} \tag{9}
\end{align*}
$$

Let $X, Y_{1}, Y_{2}, Z_{1}, Z_{2} \in \mathcal{C}$, i.e. they are complex random variables. Moreover, assume X, Z_{1} and Z_{2} are zero mean and Z_{1} and Z_{2} are independent of X.
(a) Assume the following: $\mathbb{E}\left[|X|^{2}\right]=\mathcal{E}_{x}, \mathbb{E}\left[\left|Z_{1}\right|^{2}\right]=\mathbb{E}\left[\left|Z_{2}\right|^{2}\right]=1$ and $\mathbb{E}\left[Z_{1} Z_{2}^{*}\right]=0$. Given Y_{1}, Y_{2} find the best minimum mean squared error linear estimator \hat{X}, where the optimization criterion is $\mathbb{E}\left[|X-\hat{X}|^{2}\right]$.
(b) If $\mathbb{E}\left[Z_{1} Z_{2}^{*}\right]=\frac{1}{\sqrt{2}}$, what is the best MMSE linear estimator of X ?
(c) If $\mathbb{E}\left[Z_{1} Z_{2}^{*}\right]=1$, what is the best MMSE linear estimator of X ?

