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Problem 1. Suppose Z is a complex random variable with density pZ .

(a) Let R = |Z|. Show that the density pR of R is given by

pR(r) = r

∫ 2π

0

pZ(r exp(jθ)) dθ.

Hint: Write Pr(R ≤ r) as an integral over x and y, then use polar coordinates.

(b) Let U = R2. Show that its density is given by

pU(u) =
1

2

∫ 2π

0

pZ(
√
u exp(iθ)) dθ.

(c) Suppose now that Z is circularly symmetric. Show that

pU(u) = πpZ(
√
u).

(d) Again suppose Z is circularly symmetric. LetX and Y be its real imaginary parts. We
know that X and Y are identically distributed, call the common density p. Suppose
that X and Y are independent. Show that

pU(x2 + y2) = πp(x)p(y).

(e) Under the assumptions of (d), conclude that

pU(x2 + y2) =
1

πp(0)2
pU(x2)pU(y2).

Assuming that pU is continuous show that it must be given by

pU(u) = α exp(−αu), u ≥ 0,

where α = πp(0)2. Hint: The only continuous functions f that satisfies f(a + b) =
f(a)f(b) are those for which f(a) = exp(βa) for some β.

(f) Show that if Z is circularly symmetric complex random variable with independent
real and imaginary parts, then Z must be Gaussian.

Problem 2.

(a) As discussed in HW1, Problem 3, the Markov bound on the probability that a real
random variable Z exceeds b is given by

Pr(Z ≥ b) ≤ E(Z)

b
.

Use Markov bound to derive the Chernoff bound on the probability that a real random
variable Z exceeds b is given by

Pr(Z ≥ b) ≤ E
(
es(Z−b)

)
, s ≥ 0.

Hint. es(z−b) ≥ 1 when z ≥ b, and es(z−b) ≥ 0 otherwise.



(b) Use the Chernoff bound to show that

Q(x) ≤ e−
x2

2

(c) Integrate by parts to derive the upper and lower bounds

Q(x) ≤ 1√
2πx2

e−
x2

2 (1)

Q(x) ≥
(
1− 1

x2

) 1√
2πx2

e−
x2

2 . (2)

(d) Here is another way to establish these tight upper and lower bounds. By using a
simple change of variables, show that

Q(x) =
1√
2π
e−

x2

2

∫ ∞
0

e
−y2

2
−xy dy

Then show that

1− y2

2
≤ e

−y2

2 ≤ 1

Putting these together, derive the bounds of part (c).

For (e)-(g), consider a circle of radius x inscribed in a square of side 2x.

(e) Show that the probability that a two-dimensional iid real Gaussian random variable
X with variance σ2 = 1 per dimension falls inside the square is equal to (1−2Q(x))2.

(f) Show that the probability that X falls inside the circle is 1− e−x2

2 .

Hint. Write pX(x) in polar coordinates.

(g) Show that (e) and (f) imply that when x is large,

Q(x) ≤ 1

4
e−

x2

2 .

Problem 3. A baseband-equivalent waveform (ωc > 2π)

x̃bb(t) = (x1 + jx2)sinc(t)

is convolved with the complex filter

w1(t) = δ(t)− jδ(t− 1)

(1) Find
y(t) = w1(t) ∗ x̃bb(t)

(2) Suppose y(t) is convolved with the imaginary filter

w2(t) = 2jsinc(t)

to get

z(t) = w2(t) ∗ y(t) (3)

= w2(t) ∗ w1(t) ∗ x̃bb(t) (4)

= w(t) ∗ x̃bb(t) (5)

Find z(t). Note that sinc(t) ∗ sinc(t− k) = sinc(t− k), k an integer.
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(3) Let
z̃(t) = Real(z(t)ejωct) = w̃(t) ∗ x(t)

where x(t) = Real(x̃bb(t)e
jωct) . Show that

w̃(t) = 4sinc(t− 1) cos(ωct)− 4sinc(t) sin(ωct)

when convolved with the passband x(t) will produce z̃(t). Hint. Use baseband cal-
culations.

Problem 4. Consider two 4-QAM systems with the same 4-QAM constellation

s0 = 1 + i, s1 = −1 + i, s2 = −1− i, s3 = 1− i.

For each system, a pair of bits is mapped into a signal, but the two mappings are different:

Mapping 1 : 00→ s0, 01→ s1, 10→ s2, 11→ s3 (6)

Mapping 2 : 00→ s0, 01→ s1, 11→ s2, 10→ s3 (7)

The bits are independent and 0s and 1s are equiprobable, so the constellation points are
equally likely in both systems. Suppose the signals are decoded by the minimum distance
decoding rule, and the signal is then mapped back into the two binary digits. Find the
error probability (in terms of the Q function) for each bit in each of the two systems.

Problem 5. Let Z = (Z1, . . . , Zn)T be a vector of complex iid Gaussian rvs with iid real
and imaginary parts, each N(0, N0

2
). The input U is binary antipodal, taking on values

a or −a, where a = (a1, . . . , an)T is an arbitrary complex n-vector. The observation V is
U + Z, and the probability density of Z is given by

fZ(z) =
1

(πN0)n
e
(
Pn

j=1

−|zj |
2

N0
)

=
1

(πN0)n
e
−||Z||2

N0 .

(a) Give expressions for fV |U(v|a) and fV |U(v| − a).

(b) Show that the log likelihood ratio for the observation v is given by

LLR(v) =
−||v − a||2 + ||v + a||2

N0

.

(c) Explain why this implies that ML detection is minimum distance detection (defining
the distance between two complex vectors as the norm of their difference).

(d) Show that LLR(v) can also be written as 4Re(〈v,a〉)
N0

.

(e) The appearance of the real part, Re(〈v, a〉), in part (d) is surprising. Point out why
log likelihood ratios must be real. Also explain why replacing Re(〈v, a〉) by |〈v, a〉|
in the above expression would give a non-sensical result in the ML test.

(f) Does the set of points {v : LLR(v) = 0} form a complex vector space?
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