ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 5	Advanced Digital Communications
Homework 3	October 2, 2009

PROBLEM 1. A set of 4 orthogonal basis functions $\phi_1(t); \phi_2(t); \phi_3(t); \phi_4(t)$ is used in the following constellation. In both the first 2 dimensions and again in the second two dimensions: The constellation points are restricted such that a point E can only follow a point E and a point O can only follow a point O. The points $\{1, 1\}, \{-1, -1\}$ are labeled as E and $\{1, -1\}, \{-1, 1\}$ are labeled as O points. For instance, the 4-dimensional point [1, 1, 1, 1] is permitted to occur, but the point [1, 1, -1, 1] can not occur.

- 1. Enumerate all M points as ordered-4-tuples.
- 2. Find b, \bar{b} (number of transmitted bits and number of transmitted bits per dimension).
- 3. Find E_x and \overline{E}_x (energy and energy per dimension) for this constellation.
- 4. Find P_e for this constellation using the nearest neighbor union bound if used on an AWGN with $\sigma^2 = 0.1$.

PROBLEM 2. Consider the following constellation to be used on an AWGN channel with variance σ^2 :

$$\begin{array}{rcl}
x_0 &=& (-1,-1) \\
x_1 &=& (1,-1) \\
x_2 &=& (-1,1) \\
x_3 &=& (1,1) \\
x_4 &=& (0,3)
\end{array}$$

- 1. Find the decision region for the ML detector.
- 2. Find the union bound and nearest neighbor union bound on P_e for the ML detector on this signal constellation.

PROBLEM 3. Let the transmitted bandpass signal be given by

$$x(t) = a\cos(2\pi(f_c + \frac{1}{T})t) + b\cos(2\pi(f_c + \frac{2}{T})t), \qquad t \in [0, T]$$

and $a \in \{0, A\}, b \in \{0, A\}$.

- 1. Find the baseband equivalent signal $x_{bb}(t)$ for the transmitted signal.
- 2. Find the vector representation of the baseband signal and draw the corresponding signal constellation.
- 3. If $a = \begin{cases} 0 & \text{w.p.}\frac{1}{2} \\ A & \text{w.p.}\frac{1}{2} \end{cases}$ and $b = \begin{cases} 0 & \text{w.p.}\frac{1}{2} \\ A & \text{w.p.}\frac{1}{2} \end{cases}$.

Find the average energy of the baseband signal. Is this a minimum energy configuration? If not how will you modify the constellation so that it is of minimum energy? PROBLEM 4. Consider a PAM baseband system in which the modulator is defined by a signal interval T and a waveform p(t), the channel is defined by a filter h(t), and the receiver is defined by a filter q(t) which is sampled at T-spaced intervals. The received waveform, after the receiver filter q(t), is then given by $r(t) = \sum_k u_k g(t - kT)$, where g(t) = p(t) * h(t) * q(t).

- (a) What property must g(t) have so that $r(kT) = u_k$ for all k and for all choices of input $\{u_k\}$? What is the Nyquist criterion for $\hat{g}(f)$?
- (b) Now assume that $T = \frac{1}{2}$ and that p(t), h(t), q(t) and all their Fourier transforms are restricted to be real. Assume further that $\hat{p}(f)$ and $\hat{h}(f)$ are specified by

$$\hat{p}(f) = \begin{cases} 1 & |f| \le 0.5\\ 1.5 - |f| & 0.5 \le |f| \le 1.5\\ 0 & |f| > 0 \end{cases}$$

and

$$\hat{h}(f) = \begin{cases} 1 & |f| \le 0.75 \\ 0 & 0.75 \le |f| \le 1 \\ 1 & 1 \le |f| \le 1.25 \\ 0 & |f| > 0 \end{cases}$$

Is it possible to choose a receiver filter transform $\hat{q}(f)$ so that there is no intersymbol interference? If so, give such a $\hat{q}(f)$ and indicate the regions in which your solution is nonunique.

- (c) Redo part (b) with the modification that now $\hat{h}(f) = 1$ for $|f| \le 0.75$ and $\hat{h}(f) = 0$ for |f| > 0.75.
- (d) Explain the conditions on $\hat{p}(f) \hat{h}(f)$ under which intersymbol interference can be avoided by proper choice of $\hat{q}(f)$. (You may assume, as above, that $\hat{p}(f)$, $\hat{h}(f)$, p(t) and h(t) are all real.)