ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 5
Advanced Digital Communications
Homework 3
October 2, 2009

Problem 1. A set of 4 orthogonal basis functions $\phi_{1}(t) ; \phi_{2}(t) ; \phi_{3}(t) ; \phi_{4}(t)$ is used in the following constellation. In both the first 2 dimensions and again in the second two dimensions: The constellation points are restricted such that a point E can only follow a point E and a point O can only follow a point O. The points $\{1,1\},\{-1,-1\}$ are labeled as E and $\{1,-1\},\{-1,1\}$ are labeled as O points. For instance, the 4 -dimensional point $[1,1,1,1]$ is permitted to occur, but the point $[1,1,-1,1]$ can not occur.

1. Enumerate all M points as ordered-4-tuples.
2. Find b, \bar{b} (number of transmitted bits and number of transmitted bits per dimension).
3. Find E_{x} and \bar{E}_{x} (energy and energy per dimension) for this constellation.
4. Find P_{e} for this constellation using the nearest neighbor union bound if used on an AWGN with $\sigma^{2}=0.1$.

Problem 2. Consider the following constellation to be used on an AWGN channel with variance σ^{2} :

$$
\begin{aligned}
& x_{0}=(-1,-1) \\
& x_{1}=(1,-1) \\
& x_{2}=(-1,1) \\
& x_{3}=(1,1) \\
& x_{4}=(0,3)
\end{aligned}
$$

1. Find the decision region for the ML detector.
2. Find the union bound and nearest neighbor union bound on P_{e} for the ML detector on this signal constellation.

Problem 3. Let the transmitted bandpass signal be given by

$$
x(t)=a \cos \left(2 \pi\left(f_{c}+\frac{1}{T}\right) t\right)+b \cos \left(2 \pi\left(f c+\frac{2}{T}\right) t\right), \quad t \in[0, T]
$$

and $a \in\{0, A\}, b \in\{0, A\}$.

1. Find the baseband equivalent signal $x_{b b}(t)$ for the transmitted signal.
2. Find the vector representation of the baseband signal and draw the corresponding signal constellation.
3. If $a=\left\{\begin{array}{ll}0 & \text { w.p. } \frac{1}{2} \\ A & \text { w.p. } \frac{1}{2}\end{array}\right.$ and $b=\left\{\begin{array}{ll}0 & \text { w.p. } \frac{1}{2} \\ A & \text { w.p. } \frac{1}{2}\end{array}\right.$.

Find the average energy of the baseband signal. Is this a minimum energy configuration? If not how will you modify the constellation so that it is of minimum energy?

Problem 4. Consider a PAM baseband system in which the modulator is defined by a signal interval T and a waveform $p(t)$, the channel is defined by a filter $h(t)$, and the receiver is defined by a filter $q(t)$ which is sampled at T-spaced intervals. The received waveform, after the receiver filter $q(t)$, is then given by $r(t)=\sum_{k} u_{k} g(t-k T)$, where $g(t)=p(t) * h(t) * q(t)$.
(a) What property must $g(t)$ have so that $r(k T)=u_{k}$ for all k and for all choices of input $\left\{u_{k}\right\}$? What is the Nyquist criterion for $\hat{g}(f)$?
(b) Now assume that $T=\frac{1}{2}$ and that $p(t), h(t), q(t)$ and all their Fourier transforms are restricted to be real. Assume further that $\hat{p}(f)$ and $\hat{h}(f)$ are specified by

$$
\hat{p}(f)= \begin{cases}1 & |f| \leq 0.5 \\ 1.5-|f| & 0.5 \leq|f| \leq 1.5 \\ 0 & |f|>0\end{cases}
$$

and

$$
\hat{h}(f)= \begin{cases}1 & |f| \leq 0.75 \\ 0 & 0.75 \leq|f| \leq 1 \\ 1 & 1 \leq|f| \leq 1.25 \\ 0 & |f|>0\end{cases}
$$

Is it possible to choose a receiver filter transform $\hat{q}(f)$ so that there is no intersymbol interference? If so, give such a $\hat{q}(f)$ and indicate the regions in which your solution is nonunique.
(c) Redo part (b) with the modification that now $\hat{h}(f)=1$ for $|f| \leq 0.75$ and $\hat{h}(f)=0$ for $|f|>0.75$.
(d) Explain the conditions on $\hat{p}(f) \hat{h}(f)$ under which intersymbol interference can be avoided by proper choice of $\hat{q}(f)$. (You may assume, as above, that $\hat{p}(f), \hat{h}(f), p(t)$ and $h(t)$ are all real.)

