ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 3
Advanced Digital Communications
Homework 2
September 25, 2009
Problem 1. In class, we considered hypothesis testing with criterion of overall probibility of error,

$$
P_{\text {error }}=\pi_{0} \cdot P\left(\text { error } \mid H_{0}\right)+\pi_{1} \cdot P\left(\text { error } \mid H_{1}\right) .
$$

Let us consider an application of hypothesis testing in radar, in this case H_{1} represents the presence of a flying object and H_{0} represents absence of a flying object, an error in detection of them is called false negative and false positive (false alarm) respectively. A system designer might decide that a false negative is much more dangerous than a false positive, so he modifies his criterion to the following formula,

$$
R=\pi_{0} C_{1,0} \cdot P\left(\text { error } \mid H_{0}\right)+\pi_{1} C_{1,0} \cdot P\left(\text { error } \mid H_{1}\right),
$$

where $C_{1,0} \gg C_{1,0}>0$.
Following this discusion, error probability is just one possible criterion for choosing a detector. As you can see, more generally, the detectors minimize other cost functions. For example, let $C_{i ; j}$ denote the cost of choosing hypothesis i when actually hypothesis j was true. Then the expected cost incurred by some decision rule $H(y)$ is:

$$
R_{j}(H)=\sum_{i} C_{i ; j} P\left[H(Y)=m_{i} \mid M=m_{j}\right]
$$

Therefore the overall average cost after taking prior probabilities into account is:

$$
R(H)=\sum_{j} \pi_{j} R_{j}(H)
$$

(a) What is the optimal decision rule to minimize the above equation?
(b) Consider the binary case, and show that likelihood ratio $\frac{p\left(y \mid H_{0}\right)}{p\left(y \mid H_{1}\right)}$ is a sufficient statistics.

Problem 2. Suppose Y is a random variable that under hypothesis H_{j} has density

$$
P_{j}(y)=\frac{j+1}{2} e^{(j+1)|y|}, \quad y \in \mathbf{R}, \quad j=0,1
$$

Assume that costs are given by

$$
C_{i j}=\left\{\begin{array}{lll}
0 & \text { if } \quad i=j ; \\
1 & \text { if } & i=1 \quad \text { and } \quad j=0 \\
\frac{3}{4} & \text { if } & i=0 \quad \text { and } \quad j=1:
\end{array}\right.
$$

1. Find the optimum risk minimizing decision region assuming equal priors.
2. Recall that average risk function is given by:

$$
R_{H}\left(\pi_{0}\right)=\sum_{j=0}^{1} \pi_{j} C_{0 ; j}+\sum_{j=0}^{1} \pi_{j}\left(C_{1 ; j}-C_{0 ; j}\right) P\left[H(Y)=m_{1} \mid M=m_{j}\right]
$$

Assume that costs are given as above. Show that $R_{\text {opt }}\left(\pi_{0}\right)$ is a concave function of π_{0}. Find the minimum, maximum value of $R_{o p t}\left(\pi_{0}\right)$ and the corresponding priors.

Problem 3. Consider the simple hypothesis testing problem for the real-valued observation Y:

$$
\begin{align*}
& H_{0}: p_{0}(y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{y^{2}}{2}\right) ; y \in \mathbf{R} \tag{1}\\
& H_{1}: p_{1}(y)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left(-\frac{(y-1)^{2}}{2 \sigma^{2}}\right) ; y \in \mathbf{R} \tag{2}
\end{align*}
$$

Suppose the cost assignment is given by $C_{0 ; 0}=C_{1 ; 1}=0 ; C_{1 ; 0}=1$, and $C_{0 ; 1}=N$. Find the decision regions for optimal minimum risk detection and investigate the behaviour when N is very large.
Problem 4. Consider an arbitrary signal set $A=\left\{a_{j}, 1 \leq j \leq M\right\}$. Assume that all signals are equiprobable. Let $m(A)=\frac{1}{M} \sum_{j} a_{j}$ be the average signal, and let A^{\prime} be A translated by $m(A)$ so that the mean of A^{\prime} is zero:

$$
A^{\prime}=A-m(A)=\left\{a_{j}-m(A), 1 \leq j \leq M\right\} .
$$

Let $E(A)$ and $E\left(A^{\prime}\right)$ denote the average energies of A and A^{\prime}, respectively.
(a) Show that the error probability of an optimum detector for an additive channel is the same for A^{\prime} as it is for A.
(b) Show that $E\left(A^{\prime}\right)=E(A)-\|m(A)\|^{2}$. Conclude that removing the mean $m(A)$ is always a good idea.
Problem 5. In this exercise we compare the power efficiency of n-cube and n-sphere signal sets for large n.

An n-cube signal set is the set of all odd-integer sequences of length n within an n-cube of side $2 M$ centered on the origin. An n-sphere signal set is the set of all odd-integer sequences of length n within an n-sphere of squared radius r^{2} centered on the origin.

Both n-cube and n-sphere signal sets therefore have minimum squared distance between signal points $d_{\text {min }}^{2}=4$ (if they are nontrivial), and n-cube decision regions of side 2 and thus volume 2^{n} associated with each signal point. The point of the following exercise is to compare their average energy using the following large-signal-set approximations:

- The number of signal points is approximately equal to the volume $V(R)$ of the bounding n-cube or n-sphere region R divided by 2^{n}, the volume of the decision region associated with each signal point (an n-cube of side 2).
- The average energy of the signal points under an equiprobable distribution is approximately equal to the average energy $E(R)$ of the bounding n-cube or n-sphere region R under a uniform continuous distribution.
(a) Show that if R is an n-cube of side $2 M$ for some integer M, then under the two above approximations the approximate number of signal points is M^{n} and the approximate average energy is $\frac{n M^{2}}{3}$. Show that the first of these two approximations is exact.
(b) For n even, if R is an n-sphere of radius r, compute the approximate number of signal points and the approximate average energy of an n-sphere signal set, using the following expressions for the volume $V_{\otimes}(n, r)$ and the average energy $E_{\otimes}(n, r)$ of an n-sphere of radius r :

$$
\begin{align*}
V_{\otimes}(n, r) & =\frac{\left(\pi r^{2}\right)^{\frac{n}{2}}}{\left(\frac{n}{2}\right)!} \tag{3}\\
E_{\otimes}(n, r) & =\frac{n r^{2}}{n+2} \tag{4}
\end{align*}
$$

(c) For $n=2$, show that a large 2 -sphere signal set has about 0.2 dB smaller average energy than a 2 -cube signal set with the same number of signal points.
(d) For $n=16$, show that a large 16 -sphere signal set has about 1 dB smaller average energy than a 16 -cube signal set with the same number of signal points. [Hint: $8!=40320(46.06 \mathrm{~dB})$.
(e) Show that as $n \rightarrow \infty$ a large n-sphere signal set has a factor of $\frac{\pi e}{6}(1.53 \mathrm{~dB})$ smaller average energy than an n-cube signal set with the same number of signal points. [Hint: Use Stirling approximation, $m!\rightarrow\left(\frac{m}{e}\right)^{m} \sqrt{2 \pi m}$ as $m \rightarrow \infty$.]

