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Problem 1. In class, we considered hypothesis testing with criterion of overall probibility
of error,

Perror = π0 · P (error|H0) + π1 · P (error|H1).

Let us consider an application of hypothesis testing in radar, in this case H1 represents
the presence of a flying object and H0 represents absence of a flying object, an error in
detection of them is called false negative and false positive ( false alarm) respectively. A
system designer might decide that a false negative is much more dangerous than a false
positive, so he modifies his criterion to the following formula,

R = π0C1,0 · P (error|H0) + π1C1,0 · P (error|H1),

where C1,0 � C1,0 > 0.
Following this discusion, error probability is just one possible criterion for choosing a

detector. As you can see, more generally, the detectors minimize other cost functions. For
example, let Ci;j denote the cost of choosing hypothesis i when actually hypothesis j was
true. Then the expected cost incurred by some decision rule H(y) is:

Rj(H) =
∑
i

Ci;jP [H(Y ) = mi|M = mj]

Therefore the overall average cost after taking prior probabilities into account is:

R(H) =
∑
j

πjRj(H)

(a) What is the optimal decision rule to minimize the above equation?

(b) Consider the binary case, and show that likelihood ratio p(y|H0)
p(y|H1)

is a sufficient statistics.

Problem 2. Suppose Y is a random variable that under hypothesis Hj has density

Pj(y) =
j + 1

2
e(j+1)|y|, y ∈ R, j = 0, 1.

Assume that costs are given by

Cij =


0 if i = j;
1 if i = 1 and j = 0;
3
4

if i = 0 and j = 1 :

1. Find the optimum risk minimizing decision region assuming equal priors.

2. Recall that average risk function is given by:

RH(π0) =
1∑
j=0

πjC0;j +
1∑
j=0

πj(C1;j − C0;j)P [H(Y ) = m1|M = mj]

Assume that costs are given as above. Show that Ropt(π0) is a concave function of
π0. Find the minimum, maximum value of Ropt(π0) and the corresponding priors.



Problem 3. Consider the simple hypothesis testing problem for the real-valued observation
Y :

H0 : p0(y) =
1√
2π

exp(−y
2

2
); y ∈ R (1)

H1 : p1(y) =
1√

2πσ2
exp(−(y − 1)2

2σ2
); y ∈ R (2)

Suppose the cost assignment is given by C0;0 = C1;1 = 0 ; C1;0 = 1, and C0;1 = N . Find the
decision regions for optimal minimum risk detection and investigate the behaviour when
N is very large.

Problem 4. Consider an arbitrary signal set A = {aj, 1 ≤ j ≤ M}. Assume that all
signals are equiprobable. Let m(A) = 1

M

∑
j aj be the average signal, and let A′ be A

translated by m(A) so that the mean of A′ is zero:

A′ = A−m(A) = {aj −m(A), 1 ≤ j ≤M}.
Let E(A) and E(A′) denote the average energies of A and A′, respectively.

(a) Show that the error probability of an optimum detector for an additive channel is the
same for A′ as it is for A.

(b) Show that E(A′) = E(A) − ||m(A)||2. Conclude that removing the mean m(A) is
always a good idea.

Problem 5. In this exercise we compare the power efficiency of n-cube and n-sphere signal
sets for large n.

An n-cube signal set is the set of all odd-integer sequences of length n within an n-cube
of side 2M centered on the origin. An n-sphere signal set is the set of all odd-integer
sequences of length n within an n-sphere of squared radius r2 centered on the origin.

Both n-cube and n-sphere signal sets therefore have minimum squared distance between
signal points d2

min = 4 (if they are nontrivial), and n-cube decision regions of side 2 and
thus volume 2n associated with each signal point. The point of the following exercise is to
compare their average energy using the following large-signal-set approximations:

• The number of signal points is approximately equal to the volume V (R) of the bound-
ing n-cube or n-sphere region R divided by 2n, the volume of the decision region
associated with each signal point (an n-cube of side 2).

• The average energy of the signal points under an equiprobable distribution is approx-
imately equal to the average energy E(R) of the bounding n-cube or n-sphere region
R under a uniform continuous distribution.

(a) Show that if R is an n-cube of side 2M for some integer M , then under the two above
approximations the approximate number of signal points is Mn and the approximate
average energy is nM2

3
. Show that the first of these two approximations is exact.

(b) For n even, if R is an n-sphere of radius r, compute the approximate number of
signal points and the approximate average energy of an n-sphere signal set, using the
following expressions for the volume V⊗(n, r) and the average energy E⊗(n, r) of an
n-sphere of radius r:

V⊗(n, r) =
(πr2)

n
2

(n
2
)!

(3)

E⊗(n, r) =
nr2

n+ 2
(4)

2



(c) For n = 2, show that a large 2-sphere signal set has about 0.2 dB smaller average
energy than a 2-cube signal set with the same number of signal points.

(d) For n = 16, show that a large 16-sphere signal set has about 1 dB smaller average
energy than a 16-cube signal set with the same number of signal points. [Hint:
8! = 40320 (46.06 dB).]

(e) Show that as n→∞ a large n-sphere signal set has a factor of πe
6

(1.53 dB) smaller
average energy than an n-cube signal set with the same number of signal points.
[Hint: Use Stirling approximation, m!→ (m

e
)m
√

2πm as m→∞.]
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