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Information Sciences: Signal Processing
Lecture 2: Filters
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Introduction

• In this lecture we will talk about a special group of systems 
called filters

• The intuitive idea about a filter is that it is a system that is able to 
remove some components from the input signal leaving some 
others unchanged. An example is the tone control that we saw 
in the previous lecture.

• Another example, more related to computer science, is an 
antispam filter. In this case, we want to remove the 
advertisement while keeping the desired messages  

Let see one more example related to signal processing. This is 
the moving average
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The moving average

• Suppose that you have a certain quantity that is measured 
every day. For example, you want to study global warming and 
you measure the temperature at the same place every day. 
Let’s call g(n) this quantity (n is the time index)

• g(n) is not exactly what we would like to have. In fact, g(n) is 
influenced by the short-term weather conditions. We can 
consider these as a source of measurement errors. If we call 
s(n) the “correct” value, we have that

g(n)=s(n)+e(n)
i.e. the measured value g(n) is the sum of the correct value s(n) 

and an error term e(n)

n

T s(n)
g(n)
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The moving average

• Suppose that we observe g(n) for a certain time (i.e n=0,1,2,..) is 
there a way to reduce the error term e(n) and obtain s(n)? 

• A common way to reduce the effect of errors from a sequence is 
to compute the average. The assumption is that the errors e(n) 
tend to have mean equal to zero.

• However, the mean gives a unique value for the whole 
sequence and we loose the dynamics of s(n) (if we want to 
study global warming, we are interested in how s(n) evolves 
over time)

• A method is to compute the moving average on L samples. This 
is defined by

y(n)=  “average of the most recent L samples of g”
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The moving average

• Example (L=4):

x(n)
1

(1+1+2/3+2/3)/4=5/6

y(n)

(1+2/3+2/3+1/3)/4=2/3

(2/3+2/3+1/3+1/3)/4=1/2

(2/3+1/3+1/3+0)/4=1/3

???

• At time n the most recent samples are g(n-L+1), …,g(n-1), g(n); 
therefore, the moving average is

y(n) =
1

L

L−1X
i=0

g(n− i)
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The moving average

• How do we choose the parameter L? 
– If L is large, many terms are included in the average. We 

expect that the error term is reduced more. However, the 
signal s(n) is also averaged and we loose the short-term 
variations of s(n)

– On the opposite, if L is small, the average is less effective in
reducing the errors, but the variations of s(n) are preserved

The choice of L is a tradeoff between noise attenuation and 
ability to preserve the dynamics of s(n) 
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The moving average

• Example: simulation (L=8)
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The moving average

• What happens if L is changed?
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Filters: general properties

• We have seen 3 examples of filters (tone control, antispam, 
moving average), are there common properties? Yes!

• The 3 filters apply always the same scheme, i.e. if we send the 
same input at different instants, we obtain the same output. We 
call this property time-invariance. This means that the system 
does not adapt and does not “age” with time

• At a certain time instant, the output of the filters is determined 
only by the past samples of the input, i.e. the systems are not 
able to use the future of the signal. We call this property 
causality

• In the following, we want to study this properties for the special 
case of discrete time linear systems
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The impulse response

• We saw that a linear function has always the form f(x)=mx and 
the parameter m identify the linear function. We want to find a 
similar representation for linear system. What is the quantity that 
plays the role of m?

• Let’s first define a special signal called Kronecker delta (or 
pulse):

• What happens if we send the pulse to the input of a linear 
system, such as the tone control or the moving average? The 
systems produces an output signal that we call impulse 
response

1
δ(n) =

(
1 if n = 0
0 if n 6= 0

∀n ∈ Z.
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The impulse response

• Let’s call h(n) the impulse response. Graphically, we have

• Example: impulse response of the moving average.
We set g(n)=δ(n) and we compute the output y(n)=h(n). 
Clearly, h(n)=0, for n<0 and n>L-1 (average of L zeros)
while h(n)=1/L, for n=0, …, L-1 (average of L-1 zeros and one 
1), i.e.

1
System

h(n)

h(n)

1/L

L
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Time invariance

• We want to study time invariance of a system. Let’s suppose 
that the input signal is a delayed pulse δ(n-N), where N is a 
constant. Call                  the output signal. Graphically we have

• We can expect that, if we delay the input signal, the output 
signal is also delayed. This is the property of time invariance.
Since the output for δ(n) was h(n), we have that the system is 
time-invariant if 

1 δ(n-N)
System

h̄(n,N)

h̄(n,N)

h̄(n,N) = h(n−N)
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Time invariance

• Example:

1
System

h(n)

Time invariance

1
System

N=3 h̄(n,N) = h(n−N)
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Time invariance

• Example: is the moving average time-invariant?

Yes! 

• Remark that we defined time invariance by considering the 
pulse signal only. Later we will see that this condition implies
time invariance for any input signal

1 Moving 
Average 1/L

Lδ(n-N)

N

h̄(n,N)

N

h̄(n,N) = h(n−N)
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Filters

• A filter is a system that is 
– Linear
– Time-invariant

• Since a filter is time-invariant, we are able to compute the output 
to a delayed pulse  δ(n-N). This is obtained by delaying the 
impulse response h(n). 

• We show that the impulse response is sufficient to compute the 
output signal corresponding to any input signal. i.e. the impulse 
response describes completely the system

• The operator that allows to compute the output signal is called 
convolution
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Convolution operator

• Let’s take an arbitrary input signal x(n):

x(n)

x(0)δ(n) +

x(1)δ(n-1)

x(2)δ(n-2)

x(3)δ(n-3)

+

+

+

We can always decompose 
x(n) as a sum of delayed pulse 
scaled by the sample 
amplitudes

x(n) =
∞X

m=−∞
x(m)δ(n−m)

Formally,



9/11/2007 Information Sciences: Signal Processing 17

Convolution operator

• We know how to compute the output corresponding to each 
delayed pulse: we delay and scale the impulse response h(n)

x(0)δ(n)

x(1)δ(n-1)

x(2)δ(n-2)

x(3)δ(n-3)

x(0)h(n)

x(1)h(n-1)

x(2)h(n-2)

x(3)h(n-3)
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Convolution operator

• Due to linearity, the output signal can be obtained by adding the 
output signals corresponding to the delayed and scaled pulses: 

x(0)h(n)

x(1)h(n-1)

x(2)h(n-2)

x(3)h(n-3)

+

+

+

+

y(n) =
∞X

m=−∞
x(m)h(n−m)
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Convolution operator

• Conclusion: the output signal y(n) can be computed from the 
input signal x(n) if we know the impulse response h(n)

• The procedure to compute the output signal is called the 
convolution product between x and h:

h ∗ x = x ∗ h
h ∗ (x1 + x2) = h ∗ x1 + h ∗ x2
h1 ∗ (h2 ∗ x) = (h1 ∗ h2) ∗ x

Commutativity

Distributivity

Associativity

y(n) =
∞X

m=−∞
x(m)h(n−m) = h ∗ x(n)

• The convolution product is a “good” product, i.e. it enjoys 
the properties of a product (e.g. for real numbers):
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Convolution operator

• Computation of the convolution: the simplest way is to 
decompose the input signal.

• Example: the moving average (L=4)

x(n)
1

h(n)

1/4
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Convolution operator

x(n)=
1

1

2/3

2/3

+

+

+

1/4

1/4

2

3
· 1
4
=
1

6

2

3
· 1
4
=
1

6

y(n)= +

+

+



9/11/2007 Information Sciences: Signal Processing 22

Convolution operator

• Result:

• The convolution gives the same result of the direct computation 
of the moving average. Try! 

1/4

1/2
2/3

5/6
7/12

1/6
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• If we know the impulse response of a linear time-invariant
system, we can compute the output signal for any input signal 
by computing the convolution

• The impulse response describes completely the behavior of the 
system! i.e. we can measure a system (e.g. microphone, 
loudspeaker) by measuring the impulse response  

• Let’s consider the opposite. Suppose we are given an arbitrary 
function h(n), can we build a linear time-invariant system that 
has h(n) as impulse response?
e.g. can we take h(n)

and build a system with impulse response h(n)?

Causality

h(n)
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Causality

• The answer is no. Of course, many things are possible on the 
blackboard, but in reality the variable “n” represents time. Let’s 
see what happens when we measure the impulse response…

h(n)

x(n)input

output

n=-3: The input was zero since 
“always” and so was the output. 
Nothing special happened so far…

n=-2: One more input sample equal to 
zero. The output continue to be zero…

n=-1: Something strange happens! 
The input continues to be zero, but the 
output is not. The system is doing 
something with no apparent reason!

n=0: Now we see why the system was active! The input sample is 1. How did the 
system know one sample ahead that we were going to send 1 at the input?
n=1,2,…: Nothing special on this part of the impulse response…
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Causality

• During the part n<0 of the impulse function, we can suppose 
that the system reaches an equilibrium state and the output is 
zero.

• To have a non zero output for n<0, the system should be able to 
predict the arrival of the pulse! We can’t build a system like that.

• We say that a system is causal if

• In order to build a system this has to be at least causal 
(necessary condition). But this is not sufficient…

h(n) = 0, ∀n < 0
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Stability

• Can the output of a system be unbounded?

• The output of the system can be unbounded, if the input is also 
unbounded. For example, the moving average of an unbounded 
signal is also unbounded

• However, if the input of a system is bounded, we want to impose 
that the output is also bounded. In such a case, we say that the
system is stable

Bounded function

y(n)

+M

-M
We can choose M (arbitrarily!), 
such that |y(n)|<M

Unbounded function

y(n)

+M

-M
The graph of y impinges on 
the forbidden region, whatever 
M we choose
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Stability

• Formally, a system is stable (Bounded Input, Bounded Output) if

For an appropriate choice of the positive constants N and M 
(you are free to choose them!)

• Example: an unstable system

If the system has a loop gain larger than 1, any non zero input 
signal will trigger an unlimited output signal (theoretically…) This 
is called the Larsen effect 

∀x(n), |x(n)| < N ∀n ∈ Z |y(n)| < M ∀n ∈ Z

Amplifier

x(n) y(n)
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Stability

• If we consider linear time-invariant systems, the impulse 
response is a complete description of the system and stability 
depends on the impulse response

• A necessary condition for stability is that the impulse response 
is bounded. This is because the impulse response is the output 
for a bounded input (i.e. the pulse).

• A necessary and sufficient condition is that

You will see the proof in a couple of years…

∞X
n=−∞

|h(n)| Converges to a finite value
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Conclusion

In this lecture we have seen that:
• Systems transform signal into other signals
• Linear time-invariant systems:

– The input-output relation that does not depend on time, i.e. a 
delay of the input signal correspond to an equal delay of the 
output signal

– They are completely described by the impulse response. 
This is the output signal corresponding to pulse signal
applied at the input. 

– The convolution product between the input signal and the 
impulse response allows to compute the output signal

• Realizable systems have to be causal, i.e. the output cannot 
anticipate the input

• Useuful systems have to be stable, i.e. the output signal does 
not “blow” when the input signal is bounded
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Systems Processing Images

• We saw that an image can be considered as a signal, where the 
time coordinate is replaced by the position

• For these signals a system is simply an algorithm that takes an 
image and generates an image as a result

• We already saw the problem of reconstruction of color images 
when a single sensor is used. The interpolation of each color 
component is an example of system
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Systems Processing Images

• Another system present in a camera is the optics. This actually 
works on the continuous image

• The optics is designed taking into account the resolution of the
sensor (large lenses for high resolution)

• Is this a linear system? 
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Systems Processing Images

• Let’s check the two conditions for linearity:

• If the input image is scaled, the output image is scaled by the 
same factor (and this is valid for any input image)
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Systems Processing Images

• Is the output of the sum equal to the sum of the outputs? 

Input image 1 Output to image 1

Input image 2 Output to image 2

Sum of image 1
and image 2

Output to the sum.
Is it equal to the sum 
of the outputs? Yes!
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Systems Processing Images

• This is valid for any pair of input images. The optics is a linear 
system!

• Is it time-invariant? Here “time” is replaced by “space”… we 
should verify that a translation of the input image gives a 
translation of the output image

• Yes! (Again this is valid for any input image)
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Systems Processing Images

• We conclude that the optics is a filter. We can compute the 
impulse response

• The impulse response represents completely the optics (with a 
certain approximation…) and we can reproduce the same effect 
in image processing software

Pulse function Impulse response
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Systems Processing Images

• What about other image processing effects? Are they linear, 
space-invariant?

Image Warping

Red eyes removal


