Problem 1 (Min Cut-Rank Relation)

Consider a linear deterministic layered network. Let $\mathbf{G}_{i j}$ be the $q \times q$ channel matrix from node i to node j, and

$$
\mathbf{y}_{j}[t]=\sum_{i} \mathbf{G}_{i j} \mathbf{x}_{i}[t]
$$

where $\mathbf{x}_{i}[t]$ and $\mathbf{y}_{j}[t]$ are the transmitted vector from node i and received vector at node j, respectively. The relay nodes wait till they receive T vectors and then they perform their own operations \mathbf{F}_{j} to obtain the transmitting vectors in the next block.

Note that the end-to-end transfer function \mathbf{H} is formed as a combination of channel matrices $\mathbf{I}_{T} \otimes$ $\mathbf{G}_{i j}$, and the operations performed at the relays \mathbf{F}_{j},

$$
\mathbf{Y}_{D}=\mathbf{H} \mathbf{X}_{S}
$$

Show that for uniform random choices of the relay operations, we have

$$
\operatorname{Pr}\left[\operatorname{rank}(\mathbf{H})<T\left(\min _{\Omega} \operatorname{rank}\left(\mathbf{G}_{\Omega, \Omega^{c}}\right)-\varepsilon\right)\right]<2^{|V|_{2}-T \varepsilon}
$$

where $|V|$ is the number of nodes in the network.

Problem 2 (Multi-Sources Deterministic Network)

Consider a linear deterministic network with two sources S_{1} and S_{2}, where S_{i} wants to communicate to the destination node at rate R_{1}. Assume the network is layered with respect to both sources. Here We will derive an inner bound (achievable region) for $\mathcal{R}=\left\{\left(R_{1}, R_{2}\right):\left(R_{1}, R_{2}\right)\right.$ is achievable $\}$, using the following scheme.

Fix a block length T and an arbitrary product distribution $\prod_{i \in \mathcal{V}} p\left(x_{i}\right)$. The source nodes maps their messages $w_{i} \in\left\{1,2, \ldots, 2^{T R_{i}}\right\}$ to transmitting sequence of vectors $\mathbf{x}_{i}[t], t=1, \ldots, T$ chosen uniformly at random according $p\left(x_{S_{i}}\right)$ (random codebook). Having T vectors received at the relay node i, it maps its received sequence \mathbf{y}_{i} to \mathbf{x}_{i} where \mathbf{x}_{i} is chosen uniformly at random according to $p\left(x_{i}\right)$ (random mapping operation). In the following we will show that the error probability of this scheme is vanishing as T grows.
(a). Justify the following chain of equality and inequalites.

$$
\begin{align*}
& \mathbb{E}[\operatorname{Pr}(\mathrm{err})] \stackrel{(i)}{=} \mathbb{E}\left[\operatorname{Pr}\left(\operatorname{error} \text { at } D \mid\left(w_{1}, w_{2}\right) \text { is sent }\right)\right] \\
& \stackrel{(i i)}{\leq} \sum_{\substack{\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \neq\left(w_{1}, w_{2}\right)}} \mathbb{E}\left[\operatorname{Pr}\left(D \text { cannot distinguish }\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \text { and }\left(w_{1}, w_{2}\right) \mid\left(w_{1}, w_{2}\right) \text { is sent }\right)\right] \\
&= \sum_{\substack{w_{1}^{\prime} \neq w_{1}}} \mathbb{E}\left[\operatorname{Pr}\left(D \text { cannot distinguish }\left(w_{1}^{\prime}, w_{2}\right) \text { and }\left(w_{1}, w_{2}\right) \mid\left(w_{1}, w_{2}\right) \text { is sent }\right)\right] \\
&+\sum_{w_{2}^{\prime} \neq w_{2}} \mathbb{E}\left[\operatorname{Pr}\left(D \text { cannot distinguish }\left(w_{1}, w_{2}^{\prime}\right) \text { and }\left(w_{1}, w_{2}\right) \mid\left(w_{1}, w_{2}\right) \text { is sent }\right)\right] \\
&+\sum_{\substack{w_{1}^{\prime} \neq w_{1} \\
w_{2}^{\prime} \neq w_{2}}} \mathbb{E}\left[\operatorname{Pr}\left(D \text { cannot distinguish }\left(w_{1}^{\prime}, w_{2}^{\prime}\right) \text { and }\left(w_{1}, w_{2}\right) \mid\left(w_{1}, w_{2}\right) \text { were sent }\right)\right] \tag{1}
\end{align*}
$$

(b). We can continue by bounding each of the terms in the RHS of above inequality. For each $\emptyset \neq I \subseteq\{1,2\}$, we define $\mathcal{S}_{I}=\left\{S_{i}: i \in I\right\}$ and $W_{I}=\left\{w_{i}: i \in I\right\}$. Show that
$\mathbb{E}\left[\operatorname{Pr}\left(D\right.\right.$ cannot distinguish $\left(W_{I^{c}}, W_{I}^{\prime}\right)$ and $\left(W_{I^{c}}, W_{I}\right) \mid\left(w_{1}, w_{2}\right)$ is sent $\left.)\right]$
$\stackrel{(i)}{\leq} \sum_{\Omega \in \Lambda_{I}} \mathbb{E}\left[\operatorname{Pr}\binom{\Omega\right.$ can distinguish $\left(W_{I}, W^{\prime}\right)$ and $\left(W_{I}, W_{I}\right)}{$ but Ω^{c} cannot }$\left(w_{1}, w_{2}\right)$ were sent $\left.)\right]$
$\stackrel{(i i)}{\leq} \sum_{\Omega \in \tilde{\Lambda}_{I}} \mathbb{E}\left[\operatorname{Pr}\left(\left.\begin{array}{c}\Omega \text { can distinguish }\left(W_{I}, W_{I}^{\prime}\right) \text { and }\left(W_{I}, W_{I}\right) \\ \text { but } \Omega^{c} \text { cannot }\end{array} \right\rvert\,\left(w_{1}, w_{2}\right)\right.\right.$ is sent $\left.)\right]$

$$
\stackrel{(i i i)}{\leq} \sum_{\Omega \in \tilde{\Lambda}_{I}} \mathbb{E}\left[\operatorname{Pr}\left(\Omega^{c} \text { cannot distinguish }\left(W_{I^{c}}, W_{I}^{\prime}\right) \text { and }\left.\left(W_{I^{c}}, W_{I}\right)\right|_{\Omega \text { can distinguish }\left(W_{I},\right.}\left(W_{I}\right) \text { and }\left(W_{I}, W_{I}\right) \text { is sent }\right)\right]
$$

where $\Lambda_{I}=\left\{\Omega: \mathcal{S}_{I} \subseteq \Omega, D \in \Omega^{c}\right\}, \tilde{\Lambda}_{I}=\left\{\Omega: \mathcal{S}_{I} \subseteq \Omega, \mathcal{N}\left(\mathcal{S}_{I}\right) \cup\{D\} \subseteq \Omega^{c}\right\}$, and $\mathcal{N}\left(\mathcal{S}_{I}\right)$ is the subset of the nodes in the network that are not in the flow of \mathcal{S}_{I}, i.e, set of all nodes j such that there is no path from any source node in \mathcal{S}_{I} to j.
(c). Argue that
$\mathbb{E}\left[\operatorname{Pr}\left(\Omega^{c}\right.\right.$ cannot distinguish $\left(W_{I^{c}}, W_{I}^{\prime}\right)$ and $\left.\left.\left.\left(W_{I^{c}}, W_{I}\right)\right|_{\Omega \text { can distinguish }\left(W_{I}, W_{I}^{\prime}\right) \text { and }\left(W_{I}, W_{I}\right)} ^{\left(w_{1}\right) \text { is sent }}\right)\right] \leq 2^{-T H\left(Y_{\Omega^{c} c} \mid X_{\Omega^{c}}\right)}$.
(d). Note that the inner term in each of the summations in RHS of (1), does not depend on W_{I}^{\prime}. Count the number of terms appear in each summation.
(e). By summarizing the above inequality, show that

$$
\begin{aligned}
& \mathbb{E}[\operatorname{Pr}(\mathrm{err})] \leq\left|\tilde{\Lambda}_{\left\{S_{1}\right\}}\right| 2^{T R_{1}} 2^{-T \min _{\left.\Omega \in \tilde{\Lambda}_{\left\{S_{1}\right\}}\right\}} H\left(Y_{\Omega_{\Omega} c} \mid X_{\Omega^{c}} c\right)} \\
& +\left|\tilde{\Lambda}_{\left\{S_{2}\right\}}\right| 2^{T R_{2}} 2^{-T \text { min }_{\Omega \in \tilde{\Lambda}_{\left\{S_{2}\right\}}} H\left(Y_{\Omega_{\Omega} c} \mid X_{\Omega c} c\right)} \\
& +\left|\tilde{\Lambda}_{\left\{S_{1}, S_{2}\right\}}\right| 2^{T\left(R_{1}+R_{2}\right)} 2^{-T \min _{\Omega_{\Omega} \in \tilde{\Lambda}_{\left\{S_{1}, S_{2}\right\}}} H\left(Y_{\Omega_{\Omega} c} \mid X_{\Omega^{c}}\right)} .
\end{aligned}
$$

(f). Find constraints on $\left(R_{1}, R_{2}\right)$ such that $\mathbb{E}[\operatorname{Pr}(\mathrm{err})] \rightarrow 0$ as $T \rightarrow \infty$.
(g). The constraints you found in part (f) involve $\tilde{\Lambda}_{I}$. In this part we show that $\tilde{\Lambda}_{I}$ can be replaced by Λ_{I} by showing

$$
\begin{equation*}
\min _{\Omega \in \bar{\Lambda}_{I}} H\left(Y_{\Omega^{c}} \mid X_{\Omega^{c}}\right)=\min _{\Omega \in \Lambda_{I}} H\left(Y_{\Omega^{c}} \mid X_{\Omega^{c}}\right) \tag{2}
\end{equation*}
$$

for any distribution $p\left(x_{i}\right)$ and all I. First argue that the RHS of (2) does not exceed the LHS. Now, assume that Ω^{*} is the minimizer of the RHS and $\Omega^{*} \cap \mathcal{N}(I) \neq \emptyset$. Define $\Omega^{\prime}=\Omega^{*} \backslash \mathcal{N}(I)$. Show that $\Omega^{\prime} \in \Lambda_{I}$ and it also minimizes the RHS by justifying the following inequalities.

$$
\begin{aligned}
H\left(Y_{\Omega^{\prime} c} \mid X_{\Omega^{\prime} c}\right) & \stackrel{(i)}{=} H\left(Y_{\Omega^{*} c} \mid X_{\Omega^{\prime} c}\right)+H\left(Y_{\mathcal{N}(I) \backslash \Omega^{* c}} \mid Y_{\Omega^{* c}} X_{\Omega^{\prime} c}\right) \\
& \stackrel{(i i)}{=} H\left(Y_{\Omega^{*} c} \mid X_{\Omega^{\prime} c}\right) \\
& (\text { (iii) } \\
= & H\left(Y_{\Omega^{* c}} \mid X_{\Omega^{* c}}\right) \\
& \stackrel{(i v)}{=} \min _{\Omega \in \Lambda_{I}} H\left(Y_{\Omega^{c}} \mid X_{\Omega^{c}}\right) .
\end{aligned}
$$

Problem 3 (Typicality in deterministic channels)

We define robust typicality as follows.
We define $\underline{x} \in T_{\delta}$ if

$$
\left|v_{\underline{x}}(x)-p(x)\right| \leq \delta p(x), \forall x \in X
$$

where $\underline{v}_{\underline{x}}(x)=\frac{1}{T}\left|\left\{t: x_{t}=x\right\}\right|$, is the empirical frequency.

We define robust joint typicality in the natural way as follows.
We define $(\underline{x}, \underline{y}) \in T_{\delta}$ if

$$
\left|v_{\underline{x}, \underline{y}}(x, y)-p(x, y)\right| \leq \delta p(x, y), \forall(x, y) \in \mathcal{X} \times \mathcal{Y}
$$

where $\boldsymbol{v}_{\underline{x}, \underline{y}}(x, y)=\frac{1}{T}\left|\left\{t:\left(x_{t}, y_{t}\right)=(x, y)\right\}\right|$, is the joint empirical frequency.
Suppose we have a deterministic channel, $Y=f(X)$.
(a). Show that if $\underline{x} \in T_{\delta}$ and

$$
\underline{y}=\left[f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right]
$$

then $(\underline{x}, \underline{y}) \in T_{\delta}$ and $\underline{y} \in T_{\delta}$.
(b). For $Y=f(X)$, i.e., if

$$
p(y \mid x=a)=\left\{\begin{array}{cc}
1 & \text { if } y=f(a) \\
0 & \text { else }
\end{array}\right.
$$

Show that if $(\underline{x}, \underline{y}) \in T_{\delta}$ it implies that $\underline{x} \in T_{\delta}$ and $\underline{y}=\left[f\left(x_{1}\right), \ldots, f\left(x_{n}\right)\right]$.

