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Problem 1 (Min Cut-Rank Relation)

Consider a linear deterministic layered network. Let Gi j be the q× q channel matrix from node i to
node j, and

y j[t] = ∑
i

Gi jxi[t],

where xi[t] and y j[t] are the transmitted vector from node i and received vector at node j, respectively.
The relay nodes wait till they receive T vectors and then they perform their own operations F j to obtain
the transmitting vectors in the next block.

Note that the end-to-end transfer function H is formed as a combination of channel matrices IT ⊗
Gi j, and the operations performed at the relays F j,

YD = HXS.

Show that for uniform random choices of the relay operations, we have

Pr[rank(H) < T (min
Ω

rank(GΩ,Ωc)− ε)] < 2|V |2−T ε,

where |V | is the number of nodes in the network.

Problem 2 (Multi-Sources Deterministic Network)

Consider a linear deterministic network with two sources S1 and S2, where Si wants to communicate
to the destination node at rate R1. Assume the network is layered with respect to both sources. Here
We will derive an inner bound (achievable region) for R = {(R1,R2) : (R1,R2) is achievable}, using
the following scheme.

Fix a block length T and an arbitrary product distribution ∏i∈V p(xi). The source nodes maps their
messages wi ∈ {1,2, . . . ,2T Ri} to transmitting sequence of vectors xi[t], t = 1, . . . ,T chosen uniformly
at random according p(xSi) (random codebook). Having T vectors received at the relay node i, it
maps its received sequence yi to xi where xi is chosen uniformly at random according to p(xi) (random
mapping operation). In the following we will show that the error probability of this scheme is vanishing
as T grows.

(a). Justify the following chain of equality and inequalites.

E[Pr(err)]
(i)
= E[Pr(error at D|(w1,w2) is sent)]
(ii)
≤ ∑

(w′1,w
′
2)6=(w1,w2)

E[Pr(D cannot distinguish (w′1,w
′
2) and (w1,w2)|(w1,w2) is sent)]

= ∑
w′1 6=w1

E[Pr(D cannot distinguish (w′1,w2) and (w1,w2)|(w1,w2) is sent)]

+ ∑
w′2 6=w2

E[Pr(D cannot distinguish (w1,w′2) and (w1,w2)|(w1,w2) is sent)]

+ ∑
w′1 6=w1
w′2 6=w2

E[Pr(D cannot distinguish (w′1,w
′
2) and (w1,w2)|(w1,w2) were sent)] (1)
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(b). We can continue by bounding each of the terms in the RHS of above inequality. For each
/0 6= I ⊆ {1,2}, we define SI = {Si : i ∈ I} and WI = {wi : i ∈ I}. Show that

E[Pr(D cannot distinguish (WI c ,W ′I ) and (WI c ,WI )|(w1,w2) is sent)]
(i)
≤ ∑

Ω∈ΛI

E
[
Pr
(

Ω can distinguish (WI c ,W ′I ) and (WI c ,WI )
but Ωc cannot |(w1,w2) were sent

)]
(ii)
≤ ∑

Ω∈Λ̃I

E
[
Pr
(

Ω can distinguish (WI c ,W ′I ) and (WI c ,WI )
but Ωc cannot |(w1,w2) is sent

)]
(iii)
≤ ∑

Ω∈Λ̃I

E
[
Pr
(

Ω
c cannot distinguish (WI c ,W ′I ) and (WI c ,WI )| (w1,w2) is sent

Ω can distinguish (WI c ,W ′I ) and (WI c ,WI )

)]
where ΛI = {Ω : SI ⊆ Ω,D ∈ Ωc}, Λ̃I = {Ω : SI ⊆ Ω,N (SI )∪{D} ⊆ Ωc}, and N (SI ) is the
subset of the nodes in the network that are not in the flow of SI , i.e, set of all nodes j such that
there is no path from any source node in SI to j.

(c). Argue that

E
[
Pr
(

Ω
c cannot distinguish (WI c ,W ′I ) and (WI c ,WI )| (w1,w2) is sent

Ω can distinguish (WI c ,W ′I ) and (WI c ,WI )

)]
≤ 2−T H(YΩc |XΩc ).

(d). Note that the inner term in each of the summations in RHS of (1), does not depend on W ′Ic . Count
the number of terms appear in each summation.

(e). By summarizing the above inequality, show that

E[Pr(err)]≤ |Λ̃{S1}|2
T R12

−T min
Ω∈Λ̃{S1}

H(YΩc |XΩc )

+ |Λ̃{S2}|2
T R22

−T min
Ω∈Λ̃{S2}

H(YΩc |XΩc )

+ |Λ̃{S1,S2}|2
T (R1+R2)2

−T min
Ω∈Λ̃{S1 ,S2}

H(YΩc |XΩc )
.

(f). Find constraints on (R1,R2) such that E[Pr(err)]→ 0 as T → ∞.

(g). The constraints you found in part (f) involve Λ̃I . In this part we show that Λ̃I can be replaced
by ΛI by showing

min
Ω∈Λ̃I

H(YΩc |XΩc) = min
Ω∈ΛI

H(YΩc |XΩc) (2)

for any distribution p(xi) and all I . First argue that the RHS of (2) does not exceed the LHS.
Now, assume that Ω∗ is the minimizer of the RHS and Ω∗∩N (I ) 6= /0. Define Ω′ = Ω∗ \N (I ).
Show that Ω′ ∈ ΛI and it also minimizes the RHS by justifying the following inequalities.

H(Y
Ω
′c |XΩ

′c)
(i)
= H(YΩ∗c |XΩ

′c)+H(YN (I )\Ω∗c |YΩ∗cXΩ
′c)

(ii)
= H(YΩ∗c |XΩ

′c)
(iii)
≤ H(YΩ∗c |XΩ∗c)
(iv)
= min

Ω∈ΛI
H(YΩc |XΩc).

Problem 3 (Typicality in deterministic channels)

We define robust typicality as follows.
We define x ∈ Tδ if

|νx(x)− p(x)| ≤ δp(x), ∀x ∈ X

where νx(x) = 1
T |{t : xt = x}|, is the empirical frequency.
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We define robust joint typicality in the natural way as follows.
We define (x,y) ∈ Tδ if

|νx,y(x,y)− p(x,y)| ≤ δp(x,y), ∀(x,y) ∈ X ×Y

where νx,y(x,y) = 1
T |{t : (xt ,yt) = (x,y)}|, is the joint empirical frequency.

Suppose we have a deterministic channel, Y = f (X).

(a). Show that if x ∈ Tδ and
y = [ f (x1), . . . , f (xn)]

then (x,y) ∈ Tδ and y ∈ Tδ.

(b). For Y = f (X), i.e., if

p(y|x = a) =
{

1 if y = f (a)
0 else

Show that if (x,y) ∈ Tδ it implies that x ∈ Tδ and y = [ f (x1), . . . , f (xn)].
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