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Solutions: Homework Set # 3
Principles of Wireless Networks

Problem 1 (Multi Source Network)

(a). Let there exists an achievable rate tuple R = (R1, . . . ,R|S |) such that for a subset T ⊆ S , we have

∑
T∈T

RT > min
Ω∈Λ(T ,D)

C(Ω).

We can create a new network by adding a “super-source” node to the original one A, that is
G ′ = (V ′,E ′), where V ′ = V ∪{A}, and E ′ = E ∪{(A, j) : j ∈ T }, with

c′i j =
{

ci j if i 6= A,
N otherwise,

where N is an integer larger than all the cut-values of the network. It is clear that A can communi-
cate to D with rate at least ∑T∈T RT . This can be done, by splitting its messages to sun-messages
of rates (RT : T ∈ T ), and send them to corresponding nodes in T . The rest of the transmission
follows exactly the transmission scheme used to achieve R in the original network. However,
the max-flow min-cut theorem for one source implies that the maximum achievable rate can be
send from A to D is

RA = min
Ω∈Λ(A,D)

C(Ω).

It is clear that a cut with T ∩Ωc 6= /0, cannot be the minimizer since its value is at least N. The
remaining cuts are the elements of Λ(T ,D). Therefore, we have

min
Ω∈Λ(T ,D)

C(Ω) < ∑
T∈T

RT ≤ maxRA = min
Ω∈Λ(A,D)

C(Ω) = min
Ω∈Λ(T ,D)

C(Ω),

which is a contradiction.

(b). In order to show the achievability, you just need to repeat the random argument used for single
source. The only difference is that you have to consider different types of error for each cut, i.e.,
the message of each source may be distinguishable or indistinguishable at each cut. Also note
that if a node does not receive information from a source node T , then it can distinguish between
different messages sent by T . Look at the solution of the second problem in Homework 4, for
more details.

Problem 2 (Deterministic Relay Network in Half-Duplex Regime)

(a). There are two cuts, as follows:

• Ω1 = {S}: For this cut we have [
yR

yD

]
= GΩ1,Ω

c
1
xS
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where

GΩ1,Ω
c
1
=



1 0 0
0 1 0
0 0 1
0 0 0
1 0 0
0 1 0

 .

Therefore C(Ω1) = rank(GΩ1,Ω
c
1
) = 3.

• Ω2 = {S,R}: Similarly,we can write

yD = GΩ2,Ω
c
2

[
xS

xR

]
where

GΩ2,Ω
c
2
=

 0 0 0 1 0 0
1 0 0 0 1 1
0 1 0 0 0 1

 .

Clearly C(Ω2) = rank(GΩ2,Ω
c
2
) = 3.

Hence the min-cut value is also 3.

(b). As we have seen in the class the min-cut value is achievable using random linear mapping at the
relays, i.e., R = 3 is achievable.

(c). Consider a block of of bits of length 5, x = [x1,x2,x3,x4,x5]. Consider tow consecutive trans-
mission slots with

xS[t] =

 x1
x2
x3

 , xS[t +1] =

 x4
x5
0

 .

Let the relay listen to the source at time t and transmit to the receiver at t +1. Having received
xS[t], it transmits

xR[t +1] =

 x3
0
0

 .

Therefore the destination nodes receives

yD[t] =

 0
x1
x2

 , yD[t +1] =

 x3
x4
x5

 .

Hence it can decode 5 bits using 2 channel uses, which gives us R = 5/2 bits/second.

(d). We assume α ∈ Q, otherwise one can find a rational number arbitrary close to it. Let N ∈ N
be such that M = Nα be an integer. In M transmission that the relay listens to the source,
the destination and relay receive MnSD and MnSR bits, respectively. In the remaining (N −M)
seconds, the relay has only M(nSR−nSD)+ innovative bits to transmit to the destination, where
x+ = max(x,0). However, it can only send (N −M)nRD bits. Therefore, the destination nodes
receives A = min[M(nSR − nSD)+,(N −M)nRD] new bits from the relay. The source node can
also transmits new bits to the destination if the destination can still decode something without
interfering with the bits it receives from relay. If nRD ≤ nSD, then receiving A bits from the
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relay, the destination can only receive B = (N −M)nSD − A bits from the source during the
second phase of communication. If nRD ≥ nSD, the destination can decode (N−M)nRD−A more
bits, while the source can only send (N −M)nSD bits, i.e., source can send min[(N −M)nRD −
A,(N −M)nSD] new bits to the destination. It is easy to see both cases can be summarized
in min [(N−M)max(nRD,nSD)−A,(N−M)nSD]. So, the total number of bits received by the
destination during N time slot is

K = MnSD +A+min [(N−M)max(nRD,nSD)−A,(N−M)nSD]
= min

{
(N−M)max(nRD,nSD)+MnSD,NnSD +M(nSR−nSD)+}

.

Dividing by N we get the rate as

R(α) = min
{
(1−α)max(nRD,nSD)+αnSD,nSD +α(nSR−nSD)+}

= min
{

max(nRD,nSD)−α(nRD−nSD)+,nSD +α(nSR−nSD)+}
.

(e). Define R∗ = maxα∈[0,1] R(α). Note that it takes the minimum of two linear functions of α, where
one is increasing and the other one is decreasing with respect to α. So, R∗ is achieved when two
functions are equal. After simplification we have

R∗ =

{
nSRnRD−n2

SD
nSR+nRD−2nSD

if nSD < min(nSR,nRD)
nSD if nSD ≥ min(nSR,nRD).

Note that in the full-duplex regime we have R = min{max(nRD,nSD),max(nSD,nSR)} which can
be rewritten as

R =
{

min(nSR,nRD) if nSD < min(nSR,nRD)
nSD if nSD ≥ min(nSR,nRD).

They are different iff nSD < min(nSR,nRD).

Problem 3 (Min-Cut value)

(a). Note that we can only focus on the connected cuts, that are cuts for which the network induced
by Ω and Ωc are connected. It is also worth mentioning that the matrix corresponding to each
cut is a block diagonal one, where the number of blocks equals to the number of layers separated
by the cut. Moreover, the rank of block diagonal matrices equal to the sum of the ranks of the
block. In the following we list the value of C(Ω).

C({S,A1}) = 3+4 = 7

C({S,A2}) = 5+3 = 8

C({S,A1,B1}) = 3+4+5 = 12

C({S,A2,B2}) = 5+2+2 = 9

C({S,A1,A2,B1}) = 4+5 = 9

C({S,A1,A2,B2}) = 2+2 = 4.

For the layered cuts we have

C({S}) = 5, C({S,A1,A2}) = 6, C({S,A1,A2,B1,B2}) = 5.

Therefore minΩC(Ω) = 4.
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(b). Note that the minimizing cut is Ω = {S,A1,A2,B2}, corresponding to

GΩ,Ωc =
[

GA1B1 +GA2B1 0
0 GB2D

]
.

We have rank(GΩ,Ωc) = rank(GA1B1 +GA2+B1)+rank(GB2D. One should choose G′
A2B1

such that
the resulting matrix GA1B1 +G′

A2+B1
) be of rank 3. This can be done by choosing (for example)

G′
A2B1

=


1 0 0 1 0
0 0 0 0 0
0 0 0 0 0
1 0 0 0 0
0 0 0 1 0

 .

4


