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Problem 1 (Coherent capacity: Symmetric assumption)

(a). The capacity of the MIMO channel with receiver CSI is given by
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(i) follows from the identity det(I +AB) = det(I +BA).

(b). We can always consider the covariance matrix of the form Kx = UtK̃xU∗
t where K̃x is also a

covariance matrix satisfying the total power constraint.

C = maxK̃x:Tr(K̃x)≤PE
[
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1
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= maxK̃x:Tr(K̃x)≤PE
[

logdet
(

IMr +
1

N0
HaK̃xHa∗

)]
Define a diagonal matrix Πi with −1 in the ith position and 1 in the remaining positions. The
entries of ΠiK̃xΠ∗

i equal those of K̃x except in the off diagonal positions in the ith row and the
ith column where the sign is reversed. The matrix ΠiK̃xΠ∗

i is a covariance matrix satisying the
power constraint, i.e., Tr{ΠiK̃xΠ∗

i }= Tr{K̃x}. If we denote R(K̃x) to be

R(K̃x) = E
[

logdet
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IMr +
1
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HaK̃xHa∗

)]
,

then

R(ΠiK̃xΠ
∗
i ) = E
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logdet
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∗
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(ii)
= E

[
logdet

(
IMr +

1
N0

HaK̃xHa∗
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= R(K̃x)

where (ii) follows from the fact that, since the columns of Ha are independent and their distri-
bution symmetric, Ha and HaΠi have the same distribution. From the concavity of the logdet(·)
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function, it follows that

R(K̃x) =
1
2

R(ΠiK̃xΠ
∗
i )+

1
2

R(K̃x)

= R(
1
2
(K̃x +ΠiK̃xΠ

∗
i ))

The entries of the matrix 1
2(K̃x + ΠiK̃xΠ∗

i ) are equal to those in K̃x except in the off diagonal
positions in the ith row and column, where the entries are zero. Iterating the above process Mt

times for i = 1, . . . ,Mt , we find that the optimal K̃x is diagonal which proves our claim.

Problem 2 (Universal code design criterion for the MISO channel)

(a). The Q(·) function is decreasing in its argument. The error probability is maximum for the h for
which ‖h∗(XA−XB)‖ is minimum subject to ‖h‖2 ≥ Mt(2R−1)

SNR

‖h∗(XA−XB)‖2 = h∗(XA−XB)(XA−XB)∗h
= h∗UΛA−BU∗h
= h̃∗ΛA−Bh̃

Since h̃ = h∗U is distributed as h,

min
h:‖h‖2≥Mt (2R−1)

SNR

‖h∗(XA−XB)‖2 = min
h:‖h‖2≥Mt (2R−1)

SNR

h∗ΛA−Bh

=
Mt(2R−1)

SNR
min

h:‖h‖2=1
∑

i
|hi|2λ

2
i

≥ Mt(2R−1)
SNR

λ
2
1

where λ1 is the smallest singular value of (XA−XB). The minimum error probability is given
by

max
h:‖h‖2≥Mt (2R−1)

SNR

Q
(‖h∗(XA−XB)‖√

2

)
= Q

(√λ2
1Mt(2R−1)

2SNR

)
= Q

(√1
2

λ̃2
1Mt(2R−1)

)
where λ̃1 is the smallest singular value of 1√

SNR
(XA−XB).

(b).

Q
(√λ2

1Mt(2R−1)
2SNR

)
< e−

λ2
1Mt (2R−1)

4SNR

≈ e−λ2
1SNR−(1−r)

where the approximation is made on the scale of SNR. As long as λ2
1 > SNR1−r, the error

probability goes down exponentially with SNR.
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Problem 3 (Diversity-Multiplexing tradeoff - Alamouti scheme over the
2×Mr MIMO)

(a). The received vector at the first time instant is given by

y[1] = h1u1 +h2u2 + z[1]

and at the second time instant is given by

y[2] = h1(−u∗2)+h2u∗1 + z[2]

This can be rewritten as(
y[1]

(y[2]∗)>

)
=

(
h1 h2

(h∗2)> −(h∗1)>

)(
u1
u2

)
+

(
z[1]

(z[2]∗)>

)

(b). Define H to be the matrix with columns h1 and h2 and let ‖H‖2 = ‖h1‖2 +‖h2‖2 Projecting the

output along the direction of
(

h1
(h∗2)>

)
gives

r1 =
1
‖H‖

(
h∗1 (h2)>

)(
y[1]

(y[2]∗)>

)
= ‖H‖u1 +w1

where w1 ∼ Cη(0,1). Likewise projecting the output along the direction of
(

h2
−(h∗1)>

)
gives

r2 =
1
‖H‖

(
h∗2 −(h1)>

)(
y[1]

(y[2]∗)>

)
= ‖H‖u2 +w2

where w2 ∼ Cη(0,1). We have made use of the fact that the two columns of H are orthogonal
to separate the signals u1 and u2 at the receiver.

(c). The channel corresponding to either stream ui is a scalar channel with gain ‖H‖ and by reasoning
similar to the previous two questions, the diversity gain at rate r logSNR is given by 2Mr(1− r).

Problem 4 (Diversity-Multiplexing tradeoff - Repetition coding over L
parallel channels)

The output of the ith channel is given by

yi = hiu+ zi

Collecting the L outputs, we have

y =


y1
y2
..
..
yL

 =


h1
h2
..
..
hL

u+


z1
z2
..
..
zL
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Projecting the output vector in the direction of


h1
h2
..
..
hL

 gives

ỹ =
1
‖h‖

(
h∗1 h∗2 .. .. h∗L

)
y

= ‖h‖u+ z̃

where z̃ ∼ Cη(0,1) and ‖h‖2 = ∑l |hl|2. The outage probability at rate r logSNR for this effective
scalar channel is given by

Pr
{

log(1+‖h‖2SNR) < r logSNR
}

= Pr
{
‖h‖2 <

SNRr−1
SNR

}
≈ Pr

{
‖h‖2 < SNR−(1−r)}

≈ SNR−L(1−r)

where the two approximations follow for large enough SNR and since ‖h‖2 ∼ χ2
2L, so Pr(‖h‖2 < ε)≈

εL. Since r is the rate achievable over L channel uses, the effective rate r̃ = r
L . In terms of this effective

rate, the diversity gain is given by L(1−Lr̃).

Problem 5 (Diversity-Multiplexing tradeoff - V-Blast with annuling)

The output at the receiver is given by

y = hkxk + ∑
i6=k

hixi + z

The decorrelator projects the output in the subspace orthogonal to the columns {hi}i6=k. If we call the
projection matrix Qk, the projection is given by

ỹk = Qky
= Qkhkxk +Qkz

Projecting ỹk along Qkhk gives the equivalent scalar channel where the achievable rate per stream k is
given by log(1 + SNR

nt
‖Qkhk‖2). In problem 3 of homework 2, we saw that Qk has rank nr − (nt −1).

Therefore ‖Qkhk‖2 ∼ χ2
2(nr−nt+1). Therefore the diversity gain at multiplexing gain of rk is given

by (nr − nt + 1)(1− rk). Since we assume the streams to have equal rate, the net rate r = ∑k rk, or
equivalently, rk = r

nt
. So the diversity gain is equivalently given by (nr−nt +1)(1− r

nt
).

Problem 6 (Diversity multiplexing tradeoff using superposition codes)

(a). We can assume that T → ∞, and therefore get the D-M tradeoff d(r) = 1− r. Note that in fact
we do not need T to be too large. As we have seen in the class uncoded QAM achieves the D-M
tradeoff of this channel with T = 1.

(b).

Pout(rH ,rL,SNR) = Pr
[
log

(
1+SNR1−β|h(b)|2 +SNR|h(b)|2

)
< rL logSNR+ rH logSNR

]
= Pr

[
|h(b)|2 <

SNRrL+rH −1
SNR+SNR1−β

]
.= SNR−(1−rL−rH).

Therefore, d̃(rL,rH) = 1− rL− rH .
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(c). Since we use successive decoder, we have to consider the weak message as noise when we
decode the first one. Let |h(b)|2 .= SNR−α for some α ∈ R. Therefore we have

SINRH =
SNR|h(b)|2

SNR1−β|h(b)|2 +1

=
SNR1−α

SNR1−β−α +1
.=

{
SNRβ if 1−α−β > 0
SNR1−α if 1−α−β≤ 0

= SNRmin(1−α,β).

Hence,

Pout(rH ,SNR) = Pr [log(1+SINRH) < rH logSNR]

= Pr
[
log

(
1+SNRmin(1−α,β)

)
< rH logSNR

]
= Pr

[
log

(
1+SNRβ

)
< rH logSNR

∣∣∣α < 1−β

]
·Pr[α < 1−β]

+Pr
[
log

(
1+SNR1−α

)
< rH logSNR,α > 1−β

]
It is clear that for β = 1, we get

Pout(rH ,SNR) = Pr
[
log

(
1+SNR1−α

)
< rH logSNR

] .= SNR−(1−rH).

For β < 1, we can write

Pout(rH ,SNR) = 1[β<rH ]

[
1−SNR−(1−β)

]
+SNR−max(1−rH ,1−β)

.=
{

1 if rH > β

SNR−(1−rH) if rH ≤ β.

(d). It is clear that

dH = lim
SNR→∞

logPout(MH ,SNR)
logSNR

=
{

0 if rH > β

1− rH if rH > β.

(e). For β > rH , we have dH = 1− rH , which is the same as in part (a).
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