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Principles of Wireless Networks

Problem 1 (Antenna spacing and angular representation )

[Exercise 7.5 from the text “Fundamentals of Wireless Communications” by Tse-Viswanath.]
In this question we study the role of antenna spacing in the angular representation of the MIMO
channel.

(a). Consider the critically spaced antenna array in Fig 1(a); there are six bins, each one correspond-
ing to a specific physical angular window. All of these angular windows have the same width as
measured in solid angle. Compute the angular window width in radians for each of the bins T`,
with�= 0, . . . ,5. Argue that the width in radians increases as we move from the line perpen-
dicular to the antenna array to one that is parallel to it.
Hint: Refer to equation (7.64) in text by Tse-Viswanath.

(a) Critically spaced antennas at
half of the wavelength

(b) Sparsely spaced antennas (c) Densely spaced antennas

Figure 1: Mapping from angular windows to bins.

(b). Now consider the sparsely spaced antenna array in Fig 1(b). Justify the depicted mapping from
the angular windows to the bins T` and evaluate the angular window width in radians for each of
the bins T` with ` = 0,1. (The angular window width of a bin T` is the sum of the all the angular
windows that correspond to the bin T`.)

(c). Justify the depiction of the mapping from angular windows to the bins T` in the densely spaced
antenna array of Fig. 1(c). Also evaluate the angular width of each bin in radians.

(d). The table below gives the attenuation, the angle with respect to the transmit antenna array and
the angle with respect to the receive antenna array for the 12 available paths between the trans-
mitter and the receiver antenna locations. Let there is only one transmit antenna (nt = 1) and we
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have Lt = 0.5. Using this information, compute the entries in the angular representation Ha of
the channel matrix for the three cases corresponding to parts (a), (b), and (c).

Path No.(i) Attenuation (ab
i ) Solid angle at Tx ant. (Ωt,i) Solid angle at Rx ant. (Ωr,i)

1 0.29 + 0.36j 0.50 -0.40
2 0.11 + 1.21j -0.90 0.0
3 1.38 + 5.60j 0.40 0.80
4 0.40 + 0.07j -0.20 0.10
5 0.91 + 1.01j 0.80 -0.90
6 2.76 + 2.11j 0.70 0.10
7 0.67 + 0.02j 0.40 -0.40
8 3.21 + 2.11j -0.10 0.20
9 1.16 + 5.57j 0.30 -0.60

10 2.89 + 1.71j 0.20 0.70
11 0.42 + 0.18j 0.70 -0.45
12 1.15 + 0.82j 0.10 -0.80

(e). Let the length of the receive antenna be increased to Lr = 5 while keeping the number of antennas
nr = 10. How does the angular representation Ha of the channel matrix compare with the angular
representation in the densely spaced case? What does this tell about the effect of increasing the
antenna length while keeping the number of antenna elements the same?

Problem 2 (Coherent capacity: Fast Fading SIMO channel)

Consider a fast fading fading SIMO channel with a single transmit antenna and Mr receive antennas.
The channel model is described by

y[m] = h[m]x[m]+ z[m] (1)

where h[m] =
(
h1[m], . . . ,hMr [m]

)T and hl[m] is the channel gain at the mth time instant from the trans-
mit antenna to the lth receive antenna and is distributed as hl[m]∼ Cη(0,1) while z[m]∼ Cη(0,σ2I).
The channel gains and the noise are i.i.d over time. The transmitter satisfies a long term power con-
straint limT→∞

1
T ∑

T
m=1 ‖x[m]‖2 ≤ P. Assume that the channel realization is known at the receiver but

not at the transmitter.

(a). An achievable rate of communication is given by 1
n I(x;y,h) where n is the block length used

for communication and the underlined quantities represent blocks, i.e., x = (x[1],x[2], . . . ,x[n]),
y = (y[1],y[2], . . . ,y[n]) and h = (h[1],h[2], . . . ,h[n]). The mutual information is computed for
some distribution p(xn) of the input block. Justify the following set of inequalities,i.e., prove
(i),(ii),(iii).

R =
1
n

I(x;y,h)

(i)
=

1
n

I(x;y|h)

(ii)
≤ 1

n

n

∑
i=1

h(y[i]|h[i])−h(y[i]|h[i],x[i])

(iii)
= EhI(x;y|h)

In the last equality, what is the distribution on x with respect to which the mutual information
is evaluated? Conclude that there is no loss in the achievable rate when restricting p(x) to be of
the form p(x) = Πn

i=1 p(x[i]) such that E‖x‖2 ≤ P.
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(b). The capacity of the channel is maxp(x) EhI(x;y|h) subject to E‖x‖2 ≤ P. Starting with a distri-
bution p(x), justify the following set of inequalities,i.e., prove (i),(ii),(iii).

EhI(x;y|h) = Eh[h(y|h)−h(y|x,h)]
(i)
≤ Eh log

∣∣∣∣I+
1

σ2 hE[xx∗]h∗
∣∣∣∣

(ii)
= Eh log

(
1+

E[xx∗]
σ2 ‖h‖

2
)

(iii)
≤ Eh log

(
1+

P
σ2 ‖h‖

2
)

(c). Justify that a sufficient statistic for detecting x[m] from y[m] is

ỹ[m] =
h∗[m]
‖h[m]‖

y[m]

(d). What is the equivalent scalar channel obtained after processing the output in the above manner?
What is the capacity of this channel?

Problem 3 (Coherent capacity: Fast fading MISO channel)

Consider the fast fading fading MISO channel with Mt transmit antennas and a single receive antenna,
i.e.,

y[m] = h∗[m]x[m]+ z[m] (2)

where h[m] =
(
h1[m], . . . ,hMt [m]

)T and hl[m] is the channel gain at the mth time instant from the lth

transmit antenna to the receive antenna and is distributed as hl[m] ∼ Cη(0,1) while z[m] ∼ Cη(0,1).
The channel gain and the noise are i.i.d over time. Assume that the channel realization is known at the
receiver but not at the transmitter.

(a). The capacity of the channel is maxp(x) I(x;y|h) subject to E‖x‖2≤P. Let the distribution on x be
p(x) and let Kx represent the covariance matrix of x. Justify the following set of inequalities,i.e.,
prove (i),(ii),(iii).

EhI(x;y|h) = Ehh(y|h)−h(y|h,x)
(i)
≤ Eh log

(
1+

1
σ2 h∗Kxh

)
(ii)
= Eh log

(
1+

1
σ2 h∗U∗ΛxUh

)
(iii)
= Eh log

(
1+

1
σ2 h∗Λxh

)
Conclude that there is no loss in achievable rate when considering distributions p(x) with a
diagonal covariance matrix.

(b). Given any such diagonal matrix Λx and any permutation matrix Π, consider ΛΠ
x = ΠΛxΠT .

Define Λ̃x = 1
t! ∑Π ΛΠ

x . Justify the following set of inequalities,i.e., prove (i),(ii),(iii).

Eh log
(

1+
1

σ2 h∗Λxh
)

(i)
=

1
t! ∑

Π

Eh log
(

1+
1

σ2 h∗ΛΠ
x h
)

(ii)
≤ Eh log

(
1+

1
σ2 h∗Λ̃xh

)
(iii)
= Eh log

(
1+

P
σ2t
‖h‖2

)
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Problem 4 (Beamforming)

Consider again the fast fading MISO channel model with Mt transmit antennas and a single receive
antenna, with channel realization known at both the transmitter and the receiver.

Let the signal to be sent be x̃[m] and the transmit beamforming strategy sends the following signal
on the Mt transmit antennas,

x[m] =
h[m]
‖h[m]‖

x̃[m]

Show that this strategy maximizes received SNR.

Problem 5 (Degrees of Freedom)

[Exercises 8.12 and 8.13 from the text “Fundamentals of Wireless Communications” by Tse-Viswanath.]

Suppose H of size nr×nt (with nt < nr) has i.i.d. CN (0,1) entries and denote the columns of H
by h1, . . . ,hnt .

(a). Show that the probability that the columns are linearly dependent is zero. Hence, conclude that
the probability that rank of H is strictly smaller that nt is zero.

(b). Show that the dimension of the subspace spanned by the vectors h1 . . . ,hk−1,hk+1, . . . ,hnt is
nt −1 with probability 1. Hence, conclude that the dimension of the subspace Vk, orthogonal to
this one, has dimension nr−nt +1 with probability 1.

Problem 6 (MMSE Successive Interference Cancellation)

Consider a MIMO system with Mt transmit and Mr receive antennas with power constraint P. The
received vector at symbol time m is,

y[m] =
Mt

∑
i=1

hixi[m]+ z[m]

where h1, . . . ,hMt are the columns of H, the elements of H are i.i.d. Gaussian and (xi[m]) are the
independent data streams transmitted on the ith antenna. Let us order the data streams as 1, . . . ,Mt and
consider a sequence of linear MMSE receivers followed by successive cancellation to decode the data
streams.

(a). Show that using the MMSE-SIC receiver, the rate at which stream k can be reliably decoded is
given by

Rk = log

∣∣∣∣∣∣1+Pkh∗k

(
N0IMr +

Mt

∑
i=k+1

Pihih∗i

)−1

hk

∣∣∣∣∣∣
(b). Show that the sum-rate is given by

Mt

∑
k=1

Rk = log

∣∣∣∣∣IMr +
1

N0

Mt

∑
i=1

Pihih∗i

∣∣∣∣∣
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(c). Setting Pi = P
Mt

, show that:

Mt

∑
k=1

Rk = log
∣∣∣∣I+

SNR
Mt

HH∗
∣∣∣∣

Conclude that linear MMSE followed by successive cancellation of independent equal power
data streams, one on each of the transmit antennas, achieves the capacity of the MIMO channel.
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