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Solutions: Homework Set # 9

Problem 1 (Conditional differential entropy of gaussian random vectors)
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Note that for a fixed y, the obtained pdf is a normal one with variance Σ2
x(1 − ρ2) and

mean ρΣxy
Σy

. so

(b)

h(X|Y ) =
∫
x
f(y)h(X|Y = y)dy

=
∫
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where h(X|Y = y) = ln(Σx

√
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√
2πe) holds because of the note in (a).

You could as well calculate h(X|Y ) by h(X|Y ) = h(X,Y )
h(Y ) .

(c) • ρ = 0: h(X|Y ) = ln(Σx

√
2πe) which is in fact h(X) and we know h(X|Y ) = h(X)

holds for X and Y being independent (ρ = 0)
• ρ = 1: h(X|Y ) = −∞. when ρ = 1, X = Y and this means X|Y = y is just a

constant and the differential entropy would thus be −∞.

(d) Call the covariance matrix, Σ and assume X and Y random vectors are both of length
N .
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Applying Matrix Inversion Lemma:[
A B
C D

]−1

=
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And again, for a fixed vector y, this is a multivariate Gaussian pdf with non-zero mean
and covariance matrix (K11 −K12K−1

22 K12).

(e) You can either find h(X|Y) similar to part (b), or use h(Y|Y) = h(X,Y)
h(Y) ;
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h(X,Y)
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where we have used that det
[
A B
C D

]
= detD det(A− CD−1B).

Problem 2 (Parallel Gaussian Channel)

(a) The capacity expression for this channel would be

C = max I(X1, X2;Y1Y2)

subject to
E[X2

1 ] ≤ P1, E[X2
2 ] ≤ P2, β1P1 + β2P2 ≤ β.

It is clear that C is achieved if β1P1 + β2P2 = β, otherwise one can increase the power,
and therefore the mutual information. increase Note that

I(X1, X2;Y1Y2) = h(Y1Y2)− h(Y1, Y2|X1, X2)
= h(Y1Y2)− h(Z1, Z2|X1, X2)
= h(Y1Y2)− h(Z1, Z2)
= h(Y1Y2)− h(Z1)− h(Z2)
≤ h(Y1) + h(y2)− h(Z1)− h(Z2)
= I(X1;Y1) + I(X2;Y2)

where the inequality is tight if and only if Y1 and Y2 are independent. If we choose inde-
pendent input X1 and X2 for the channels, then the outputs would be also independent,
and we can achieve the maximum mutual information. So,

C = max
P1,P2:β1P1+β2P2=β
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Note that instead of maximizing the whole expression above, we can only maximize
f(P1, P2) = (N1 + P1)(N2 + P2) subject to g(P1, P2) = β1P1 + β2P2 − β = 0, since
the rest does not depend on P1 and P2. Using the KKT conditions we have,

∂f

∂Pi
= λ

∂g

∂Pi
∀i : P ∗i > 0.

The channel start acting like a pair of channels if P ∗1 > 0 and P ∗2 > 0. Therefore,

P2 +N2 = λβ1

P1 +N1 = λβ2,

or
β1(P1 +N1) = β2(P2 +N2)

. Solving the system of equations{
β1P1 − β2P2 = −β1N1 + β2N2

β1P1 + β2P2 = β

results in

P ∗1 =
β − (β1N1 − β2N2)

2β1
(1)

P ∗2 =
β + (β1N1 − β2N2)

2β2
. (2)

Note that P ∗1 and P ∗2 are positive if and only if β > |β1N1−β2N2|. Therefore, the critical
value for β at which the channel starts acting like a pair channel is β∗ = |β1N1 − β2N2|.

(b) Having the optimal values for P ∗1 and P ∗2 from (1) and (2), we have

P ∗1 =
11
2
, P ∗2 =

9
4

and
C =
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3
) +
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2
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2
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2

log(
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48

) ' 1.295.

Problem 3 (Two look Gaussian channel)

The input distribution that achieves capacity is X ∼ N (0, P ). Evaluating the mutual informa-
tion for this distribution we get:

C2 = max I(X;Y1, Y2)
=h(Y1, Y2)− h(Y1, Y2|X)
=h(Y1, Y2)− h(Z1, Z2|X)
=h(Y1, Y2)− h(Z1, Z2).

From the noise covariance matrix we get

h(Z1, Z2) =
1
2

log(2πe)2|KZ | =
1
2

log(2πe)2N2(1− ρ2).
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Since Y1 = X + Z1 and Y2 = X + Z2, we have

(Y1, Y2) ∼ N
(

0,
[
P +N P + ρN
P + ρN P +N

])
and

h(Y1, Y2) =
1
2

log(2πe)2|KY | =
1
2

log(2πe)2
(
N2(1− ρ2) + 2PN(1− ρ)

)
.

Hence the capacity is

C2 =
1
2

log
(

1 +
2P

N(1 + ρ)

)
(a) For ρ = 1 we get C2 = 1

2 log
(
1 + P

N

)
which is the single channel capacity. The reason is

that Y1 = Y2 so the additional output symbol is not giving us any extra information.

(b) For ρ = 0 the capacity is C2 = 1
2 log

(
1 + 2P

N

)
which corresponds to using twice the power

in a single look.

(c) For ρ = −1 we get C2 =∞. If we compute Y1 + Y2 we can perfectly recover X.

Note that in all the cases above the capacity is the same as the capacity of the channel X →
(Y1 + Y2).

Problem 4 (Intermittent additive noise channel)

(a) With finite probability the channel is a noise-free channel. In this situation we can guess
that the capacity is infinite.

(b) An infinite sequence of bits b0b1b2 . . . can be represented by a real number x =
∑∞

i=0 bi2
−(i+1)

such that x ∈ [0, 1]. Let x′ = 2
√
Px−

√
P so that x′ ∈ [−

√
P ,
√
P ] be a real number whose

amplitude squared is less than P and consider a communication strategy that always sends
x′ across the channel. Then, when Zi = 0, the receiver gets exactly x′. However, when
Zi = Z∗, the receiver observes a corrupted version of x′, so in general the receiver cannot
know when the channel is noise-free.

Notice that Pr(Yi = Yj |Zi, Zj ∼ N ) = 0., i.e. whenever the signal is corrupted by Gaus-
sian noise, the receiver will never observe the same output symbol twice. The decoding
strategy can be the following: observe Yi’s until you receive two identical Yi’s, which hap-
pens with probability 1 in finite number of trials. This communication strategy may not
be the optimal one, but it does achieve infinite number of bits per symbol on average.
Hence, the capacity of this channel is indeed infinity.
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