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Solutions: Homework Set # 3

Problem 1

The Kraft’s inequality implies
6

∑

i=1

D−li ≤ 1

We define f(D) =
6

∑

i=1

D−li . It is clear that f(·) is a decreasing function.

Since f(2) > 1 ⇒ D can not be 2.
Since f(3) < 1 ⇒ D ≥ 3

Problem 2

(a) The binary Huffman code for random variable X is
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The average length of this code is LH :

LH = 0.5 × 1 + 0.25 × 2 + 0.1 × 3 + 0.05 × 4 + 0.1 × 5 = 2

(b) Note that in order to obtain an optimal D-ary Huffman code, we have to add dummy
symbols (symbols of zero probability) such that the total number of symbols becomes
k(D − 1) + 1, for some integer k. It can be done by adding only one dummy symbol in
this example. The quaternary Huffman code for random variable X is
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0 .05 .05 .05
dd dc db da

.1 .25 .5
c b a

The average length of this code is LQ:

LQ = 0.15 × 2 + 0.85 × 1 = 1.15

(c) By performing the mapping, we are doubling the length of each quaternary codeword.
Hence

LQB = 2LQ = 2.30

(d) Since the binary Huffman code is an optimal binary code, then its average length cannot
be less than that of the other binary code. So

LH ≤ LQH

For the upper bound we first notice that

H2(X) ≤ LH (1)

where H2(X) =
∑

i pi ∗ log2
1
pi

and

LQ ≤ H4(X) + 1 (2)

where H4(X) =
∑

i pi log4
1
pi

= 1
2H2(X). So

LQ ≤
1

2
H2(X) + 1 (3)

Hence, from part (c) and using (3) we obtain

LHQ = 2LQ < 2(
1

2
H2(X) + 1) = H2(X) + 2 ≤ LH + 2

where the last inequality follows from (1).

(e) Suppose that X takes values from A,B,C,D with equal probabilities, (0.25, 0.25, 0.25, 0.25).
The binary Huffman code is then

A → 00

B → 01

C → 10

D → 11

and the quaternary Huffman code is just a, b, c, d. Hence, the binary code we get after
applying the mapping from (c) is the same as the binary Huffman code.
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(f) Suppose C2 be the binary Huffman code with codeword lengths (l1, . . . , lm) for a given
source. Modify the code by adding a single “0” at the end of any codeword with odd
length. Then perform the inverse of mapping given in part (e) to obtain a uniquely
decodable quarternary code, C4 of codeword lengths (l′1, . . . , l

′
m), where

l′i =

{

1
2 li if li is even,
1
2 (li + 1) if li is odd.

= ⌈
li

2
⌉. (4)

It is clear that the average length of the new code satisfies

L(C4) =
m

∑

i=1

pil
′
i ≤

m
∑

i=1

pi
li + 1

2
=

1

2
(LH + 1). (5)

Since the quaternary Huffman code is optimal, we have

LQ ≤ L(C4) ≤
1

2
(LH + 1), (6)

and therefore, using the same argument as in part (d),

LQB = 2LQ ≤ 2L(C4) ≤ LH + 1. (7)

It can be shown that the bound is tight for the random variable X which takes value in
A,B with equal probabilities.

Problem 3

(a) We will be using questions to determine the sequence X1,X2, . . . ,Xn, where Xi is 1 or 0
according to whether the ith object is good or defective. Thus the most likely sequence
is all 1’s with probability of

∏n
i=1 pi, and the least likely sequence is all 0’s sequence with

probability
∏n

i=1(1 − pi). Since the optimal set of questions correspond to the Huffman
code for the source, a good lower bound on the average number of questions is the entropy
of the sequence X1,X2, . . . ,Xn. But since the Xi’s are independent Bernoulli random
variables, we have

EQ ≥ H(X1,X2, . . . ,Xn) =
∑

H(Xi) =
∑

H(pi).

(b) The last bit in the Huffman code distinguishes between the least likely source symbols.
(By the condition of the problem all the probabilities are different, and thus the two
least likely sequences are uniquely defined.) in this case, the two least likely sequences
are 000 · · · 00 and 000 · · · 01, which have probabilities (1 − p1)(1 − p2) · · · (1 − pn) and
(1− p1)(1− p2) · · · (1− pn−1)pn respectively. Thus the last question will ask ”Is Xn = 1?”
i.e., ”Is the last item defective?”

(c) By the same argument as in part (a), an upper bound on the minimum average num-
ber of questions is an upper bound in the average length of a Huffman code, namely
H(X1,X2, . . . ,Xn) + 1 =

∑

H(pi) + 1
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Problem 4

(a) The distribution of X is λp1 + (1 − λ)p2

(b) I(X;Y |Z) = H(Y |Z) − H(Y |X,Z)

I(X;Y ) = H(Y ) − H(Y |X)

As p(y|x) is fixed, H(Y |X = x) = H(Y |X = x,Z = 0)

= H(Y |X = x,Z = 1)

Thus, H(Y |X) =
∑

x

p(x)H(Y |X = x)

=
∑

x

∑

z

p(x, z)H(Y |X = x,Z = z)

= H(Y |X,Z)

Furthermore, H(Y |Z) < H(Y )

So
I(X;Y |Z) < I(X;Y )

Remark: Note that this inequality can be also obtained using the Markov chain Z ↔
X ↔ Y , as

I(X,Z;Y ) = I(X;Y ) + I(Z;Y |X)

= I(Z;Y ) + I(X;Y |Z).

The Markov chain implies I(Z;Y |X) = 0, and since I(Z;Y ) ≥ 0, we can conclude
I(X;Y ) ≥ I(X;Y |Z).

(c) By expansion of I(X;Y |Z) with respect to Z we have

I(X;Y |Z) =
∑

z=0,1

p(Z = z)I(X;Y |Z = z)

= λI(X;Y |Z = 0) + (1 − λ)I(X;Y |Z = 1)

= λI(X1;Y ) + (1 − λ)I(X2;Y ).

(d) Replacing I(X;Y |Z) from part (c) in the inequality of part (b), we obtain λI(X1;Y ) +
(1 − λ)I(X2;Y2) < I(X;Y ) which finishes the proof to the concavity of I(X;Y ) in p(x)
(when p(y|x) is fixed).

Problem 5

(a) We have seen in the course that H(x) is a concave function of p(x). We consider the
random variable X1 with distribution P1 = (p1, ..., pi, ...pj , ...pm) and the random variable
X2 with the distribution P2 = (p1, ..., pj , ...pi, ...pm). Define the random variable X as the
random variable X1 with probability 1

2 and random variable X2 with probability 1
2 .

H(X) is concave in p(x). So

H(X) >
1

2
H(X1) +

1

2
H(X2)

but it is clear that H(X1) = H(X2). Therefore, H(X) > H(X1).

(b) The same argument.
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Problem 6

(a) limn→∞
−1
n

log q(X1,X2, ...,Xn) = lim
n→∞

−1

n
log

n
∏

i=1

q(Xi)

= lim
n→∞

−1

n

n
∑

i=1

log q(Xi)

According to L.L.N (Law of Large Numbers):

= −E(log q(X1))

=

m
∑

x=1

p(x) log
1

q(x)

p(x)

p(x)

= D(p‖q) + H(p).

(b) lim
n→∞

1

n
log

q(X1,X2, ...,Xn)

p(X1,X2, ...,Xn)
= lim

n→∞

1

n

n
∑

i=1

log
q(Xi)

p(Xi)

= E[log q(X1)
p(X1) ]

= −D(p‖q)

Thus,
q(x1,X2, ...,Xn)

p(x1,X2, ...,Xn)
= 2−nD(p‖q).
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