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Solution to Midterm

Problem 1

(a)

Yn =
1
n

log p (X1, ...,Xn)

Since {Xi} are independent p (x1...xn) = p (x1).
The random variables log p (xi) are iid because Xi are iid. So

Yn =
1
n

log

(
n∏

i=1

p (xi)

)

=
1
n

n∑

i=1

log p (xi)

By the weak law of large numbers,

lim
n→∞

Yn = E{log p (X)} = −H(X)

So, Yn converges to

H (X) = −
[

8
23

log
8
23

+
6
23

log
6
23

+
4
23

log
4
23

+
2
23

log
2
23

+
2
23

log
2
23

+
1
23

log
1
23

]

= −
[

1
23

(8 log 8 + 8 log 23 + 6 log 6 + 6 log 23 + 4 log 4 + 4 log 23)
]

−
[

1
23

(4 log 2 + 4 log 23 + log 1 + log 23)
]

= − 1
23

(−23 log 23 + 24 + 6 log 6 + 8 + 4 + 0)

= 2.28 bits

(b)

Zn =
1
n

n∑

i=1

X2
i

Let Ti = X2
i . We know {Ti} are iid since {Xi} are iid. So again by the law of large

numbers,
lim

n→∞
Zn = E{T} = E

{
X2

}

E
{
X2

}
= 02.

8
23

+ 12.
6
23

+ 22.
4
23

+ 32.
2
23

+ 42.
2
23

+ 52.
1
23

=
6
23

+
16
23

+
18
23

+
32
23

+
25
23

=
97
23
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(c)

Z = E
{
X2

}
=

97
23

and
(
E

{
X2

})2 =
[
0.

8
23

+ 1.
6
23

+ 2.
4
23

+ 3.
2
23

+ 4.
2
23

+ 5.
1
23

]2

=
(

33
23

)2

We will show that Z = E
{
X2

}
≥ E2{X}. To see why this is so, let a random variable

V = (X − E{X})2 ≥ 0.

E{V } = E
{
(X − E{X})2

}

= E
{
X2 + E2{X} + 2XE{X}

}

= E
{
X2

}
+ E2{X}− 2E2{X}

= E
{
X2

}
− E2{X}

But E{V } ≥ 0, since V can only take non-negative values. Thus E
{
X2

}
≥ E2{X} in

general.

Problem 2

(a) We will simply start with the most probable until we find the bad one. (But don’t taste
the last one, it is useless!) I will taste bottle 1 first (prob = 8

23 ).

(b) In that case, we can use Huffman coding. So the strategy would be to mix wines of the
first and the second bottles and taste the mixture. If it was bad, we taste one of them,
otherwise we continue on the other branch of the Huffman tree.

1

14/23

9/23
5/23

3/23

pili

8/23

6/23

4/23

2/23
2/23

1/23

2

2
2

3

4

4

L = 2.
8
23

+ 2.
6
23

+ 2.
4
23

+ 3.
2
23

+ 4.
2
23

+ 4.
1
23

=
16 + 12 + 8 + 6 + 8 + 4

23

=
54
23

(c) No, it is optimal as we saw in part (c) that it is possible to find the bad wine with less
average number of tastings.
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Problem 3

Note that the process is a (first-order) Markov chain since the the probability of being in each
state (building) for the next time only depends on the current state (building). The transition
matrix for this process would be

P =

IN CO SG
IN
CO
SG




0 2/3 1/3

2/6 2/6 2/6
1/3 2/3 0



 ,

where Pij is the probability of going to state j given that we are in state i.

(a) The stationary distribution is a vector Π = (ΠIN ΠCO ΠSG) = (p1, p2, p3), where ΠP =
Π.

1
3
p2 +

1
3
p3 = p1

2
3
p1 +

1
3
p2 +

2
3
p3 = p2

1
3
p1 +

1
3
p2 = p3

p1 + p2 + p3 = 1

p2 + p3 = 3p1

2p1 + p2 + 2p3 = 3p2

p1 + p2 = 3p3

p1 + p2 + p3 = 1

⇒ Π =
(

1
4

1
2

1
4

)
.

(b)

H (X) = lim
n→∞

1
n

H (X1...Xn)

(a)
= lim

n→∞

1
n

n∑

i=1

H (Xi|X1...Xi−1)

(b)
= lim

n→∞

1
n

n∑

i=1

H (Xi|Xi−1)

(c)
= lim

n→∞

1
n

n∑

i=1

H (X2|X1)

= lim
n→∞

H (X2|X1)

= H (X2|X1)

where in (a) the joint entropy is expanded using the chain rule, (b) is by using the property
of the Markov chain, and in (c) the stationarity of the process has been used.
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H (X) = H (X2|X1) =
∑

x∈{IN,CO,SG}

p (x)H (X2|X1 = x)

where p(x) is the stationary distribution of the process.

H (X2|X1 = IN) = −2
3

log
2
3
− 1

3
log

1
3

= −2
3

+ log 3

H (X2|X1 = IN) = −1
3

log
1
3
− 1

3
log

1
3
− 1

3
log

1
3

= log 3

H (X2|X1 = IN) = −2
3

+ log 3 (similar to IN case)

H (X) = 2
1
4

(
−2

3
+ log 3

)
+

1
2

log 3 = −1
3

+ log 3 ∼= 1.25

(c) The entropy of the process is the entropy of its stationary distribution.

H (X) = 2 − 1
4

log
1

1/4
+

1
2

log
1

1/2
= 1.5

The same relationship always holds since

H (X) = H (X2) ≥ H (X2|X1) = H (X) ,

and the inequality holds because conditioning reduces the average entropy.
Remark: Note that it is possible that conditioning on a specific realization of a random
variable decreases the entropy, i.e

H (X) < H (X|Y = y) .

However, conditioning always reduces the average entropy, i.e.

H (X) ≥ H (X|Y ) =
∑

y∈Y

p (y)H (X|Y = y) .

Problem 4

(a) Regardless of what we have as the probability distribution, we have Pr[A] = 1
2 and

Pr[B] = 1
4 . Specifically,

p (A) = λ
1
2

+ (1 − λ)
1
2

=
1
2

p (B) = λ
1
4

+ (1 − λ)
1
4

=
1
4

p (C) = λ
1
16

+ (1 − λ) 0 =
λ

16

p (D) = λ
1
16

+ (1 − λ) 0 =
λ

16

p (E) = λ
1
16

+ (1 − λ)
2
16

=
1
8
− λ

16

p (F ) = p (E) =
1
8
− λ

16
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For 0 < λ< 1, p (E) = p (F ) > p (C) = p (D).
If λ = 1, p (E) = p (F ) = p (C) = p (D) (model 1),
If λ = 0 model 2, obviously.

So for 0 < λ < 1, we add p (C) + p (D) = λ
8 . Is this smaller than 1

8 − λ
16?

λ
8 < 1

8 − λ
16 ⇒ 3

16λ < 1
8 , λ < 2

3 . So for 0 < λ< 2
3 , Huffman procedure goes on by

adding;λ8 + 1
8 − λ

16 = λ
16 + 1

8 > 1
8 − λ

16 , but smaller than 1
4 .

To sum up: For λ = 0,
A

B

C

D

which means l(A) = 1, l(B) = 2, l(C) = l(D) = 0, l(E) = l(F ) = 3

⇒ L =
1
2
1 +

1
4
2 +

1
8
3 +

1
8
3 = 1.75

For 0 < λ< 2
3 ,

A

B

C

E
F

D

which means l(A) = 1, l(B) = 2, l(C) = l = (D) = l(E) = (F ) = 4

⇒ L =
1
2

+
1
4
2 +

(
1
8
− λ

16

)
3 +

(
1
8
− λ

16

)
4 + 52

λ

16
=

7
8

+
3
16

λ

For 2
3 < lambda ≤ 1,

A

B

E

F
C

D which means l(A) = 1, l(B) = 2, l(C) =
l(D) = 0, l(E) = l(F ) = 3

⇒ L =

(b) If the model is known, then the optimal strategies are the ones we found for λ = 0 or
λ = 1 in part (a). Average length L =.
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(c) They think the model 1 is valid, so according to this they construct their codes like we
have shown in part (a). Then

L =
1
2
1 +

1
4
.2 + 0.4 + 0.4 +

1
8
.4 +

1
8
.4 = 2

The average length for the true model is 1.75 as found. So Lfalse − Ltrue = 2 − 1.75 =
0.25bits.

D (p (x) ||q (x)) =
∑

x

p (x) log
p (x)
q (x)

=
∑

x

p (x) log
1

q (x)
−

∑

x

p (x) log
1

p (x)

Let’s find D (P2||P1) for this question (since the real model is model 2).

D (P2||P1) =
1
2

log 1 +
1
4

log 1 +
1
8

log
1/8
1/16

+
1
8

log
1/8
1/16

=
1
4

We see that D (P2||P1) = 1
4 = Lfalse −Ltrue, which is expected. Apart from any rounding

effects due to the log function, D distance is the difference between the average false code
and the average true code.

Problem 5

Note that in general, whenever you have a random variable you also have any deterministic
function of that, i.e.,

I(A;B) = I(A;B, f(B)). (1)

Also by replacing a random variable by its deterministic function, the mutual information does
not exceed,

I(A;B) = I(A;B, f(B)) = I(A; f(B)) + I(A;B|f(B)) ≥ I(A; f(B)), (2)

where the inequality holds since I(A;B|f(B)) ≥ 0.

I(X; X̆
(a)
≤ I(X;TZ)
(b)
≤ I(X;SZ)
(c)
= I(X;SZX̂)
(d)
= I(X; X̂) + I(X;SZ)

where

• (a) follows from (2) since X̆ = f4(T,Z),

• (b) is again by (2) and the fact that T = f3(Z),

• (c) is due (1) since X̂ = f2(S),
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• and (d) is by chain rule for mutual information.

Remark: There are many other ways to prove this inequality, e.g., by expanding the
mutual information as the difference of entropy functions. However, any correct solution needs
to incorporate the properties of entropy or mutual information acting on functions, such as (1)
and (2).

Note that although H(f(B)|B) = 0, but H(B|f(B)) can be positive (e.g., a constant func-
tion), and it is zero if and only if the function f(·) is injective.
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