Problem 1 (A mutual information game)

(a) Let $a_{b}=\arg \min _{a} f(a, b)$, i.e., $f(a, b) \geq f\left(a_{b}, b\right), \forall a, b$. Then by taking the maximum of both sides,

$$
\max _{b} f(a, b) \geq \max _{b} f\left(a_{b}, b\right)=\max _{b} \min _{a} f(a, b)
$$

Note that the RHS does not depend on a anymore, while the LHS still depends on a. However, since the inequality holds for all a and b, it also holds for the minimizing a, i.e.,

$$
\min _{a} \max _{b} f(a, b) \geq \max _{b} \min _{a} f(a, b)
$$

(b)

$$
\begin{aligned}
I\left(X ; X+Z^{*}\right) & =h\left(X+Z^{*}\right)-h\left(X+Z^{*} \mid X\right) \\
& =h\left(X+Z^{*}\right)-h\left(Z^{*}\right) \\
& \leq h\left(X^{*}+Z^{*}\right)-h\left(Z^{*}\right) \\
& =I\left(X^{*} ; X^{*}+Z^{*}\right)
\end{aligned}
$$

where the inequality follows from the fact that given the variance, the entropy is maximized by the Gaussian distribution.
(c) 1. This is just expansion of mutual information as $I(X ; X+Z)=h(X+Z)-h(X+$ $Z \mid Z)=h(Y)-h(Z)$ since X and Z are independent.
2. Each entropy expression is replaced by its definition.
3. Note that $f_{Y^{*}}(y)=\frac{1}{\sqrt{2 \pi(P+N)}} \exp \left(-\frac{y^{2}}{2(P+N)}\right)$. Therefore, $\log f_{Y^{*}}(y)=-\frac{y^{2}}{2(P+N)}-$ $\frac{1}{2} \log 2 \pi(P+N)$.

$$
\begin{aligned}
\int_{y} f_{Y^{*}}(y) \log f_{Y^{*}}(y) d y & =\int_{y} f_{Y^{*}}(y)\left[-\frac{y^{2}}{2(P+N)}-\frac{1}{2} \log 2 \pi(P+N)\right] d y \\
& =-\frac{1}{2(P+N)} \int_{y} y^{2} f_{Y^{*}}(y) d y-\frac{1}{2} \log 2 \pi(P+N) \int_{y} f_{Y^{*}}(y) d_{y} \\
& =-\frac{1}{2(P+N)} \mathbb{E}_{Y^{*}}\left[y^{2}\right]-\frac{1}{2} \log 2 \pi(P+N) \\
& \stackrel{(a)}{=}-\frac{1}{2(P+N)} \mathbb{E}_{Y}\left[y^{2}\right]-\frac{1}{2} \log 2 \pi(P+N) \\
& =-\frac{1}{2(P+N)} \int_{y} y^{2} f_{Y}(y) d y-\frac{1}{2} \log 2 \pi(P+N) \int_{y} f_{Y}(y) d_{y} \\
& =\int_{y} f_{Y}(y)\left[-\frac{y^{2}}{2(P+N)}-\frac{1}{2} \log 2 \pi(P+N)\right] d y \\
& =\int_{y} f_{Y}(y) \log f_{Y}(y) d y
\end{aligned}
$$

where (a) follows from the fact that $\mathbb{E}_{Y^{*}}\left[y^{2}\right]=\mathbb{E}_{Y}\left[y^{2}\right]$. The same proof holds for Z and Z^{*}.
4. Integration is a linear operation, and

$$
\begin{aligned}
-\int_{y} f_{Y^{*}}(y) \log f_{Y^{*}}(y) d y+\int_{y} f_{Y}(y) \log f_{Y}(y) d y & =\int_{y} f_{Y}(y)\left[\log f_{Y}(y)-\log f_{Y^{*}}(y)\right] d y \\
& =\int_{y} f_{Y}(y) \log \frac{f_{Y}(y)}{f_{Y^{*}}(y)} d y
\end{aligned}
$$

Similarly, we can rewrite the two integrals on Z.
5.

$$
\begin{aligned}
\int_{y} f_{Y}(y) & \log \frac{f_{Y}(y)}{f_{Y^{*}}(y)} d y+\int_{z} f_{Z}(z) \log \frac{f_{Z^{*}}(z)}{f_{Z}(z)} d z \\
& =\int_{y}\left(\int_{z} f_{Y, Z}(y, z) d z\right) \log \frac{f_{Y}(y)}{f_{Y^{*}}(y)} d y+\int_{z}\left(\int_{y} f_{Y, Z}(y, z) d y\right) \log \frac{f_{Z^{*}}(z)}{f_{Z}(z)} d z d y \\
& =\int_{y} \int_{z} f_{Y, Z}(y, z) \log \frac{f_{Y}(y)}{f_{Y^{*}}(y)} d z d y+\int_{y} \int_{z} f_{Y, Z}(y, z) \log \frac{f_{Z^{*}}(z)}{f_{Z}(z)} d z d y \\
& =\int_{y} \int_{z} f_{Y, Z}(y, z) \log \frac{f_{Y}(y) f_{Z^{*}}(z)}{f_{Y^{*}}(y) f_{Z}(z)} d z d y
\end{aligned}
$$

6. By concavity of the function $\log (\cdot)$.
7. Note that $Y=X^{*}+Z$. Therefore

$$
f_{Y, Z}(y, z)=f_{X^{*}, Z}(y-z, z)=f_{X^{*}}(y-z) f_{Z}(z)
$$

where the last equality follows form the fact that X^{*} and Z are independent.
8. This should be in fact equality. The reason is that $f_{Z}(z)$ can be cancelled from the nominator and the denominator, and then we take out every term does not depend on z from the inner integral.
9. Again since $Y^{*}=X^{*}+Z^{*}$, and X^{*} and Z^{*} are independent, we have $f_{Y^{*}}(y)=$ $\int_{z} f_{X^{*}}(y-z) f_{Z^{*}}(z) d z$.
10. By cancelling $f^{Y^{*}}(y)$, the remaining would be $\int_{y} f_{Y}(y) d y$ which equals 1 since $f_{Y}(y)$ is a probability distribution.
(d) Using parts (b) and (c) we have,

$$
\begin{align*}
\min _{p(z)} \max _{p(x)} I(X ; X+Z) & \leq \max _{p(x)} \leq \max _{p(x)} I\left(X ; X+Z^{*}\right) \\
& =I\left(X^{*} ; X^{*}+Z^{*}\right) \\
& =\min _{p(z)} I\left(X^{*} ; X^{*}+Z\right) \\
& \leq \max _{p(x)} \min _{p(z)} I(X ; X+Z) . . \tag{1}
\end{align*}
$$

On the other hand, the result of part (a) for $f(p(z), p(x))=I(X ; X+Z)$ gives us

$$
\begin{equation*}
\min _{p(z)} \max _{p(x)} I(X ; X+Z) \geq \max _{p(x)} \min _{p(z)} I(X ; X+Z) \tag{2}
\end{equation*}
$$

Combining (1) and (2), we have

$$
\begin{aligned}
\min _{p(z) \in \mathbb{F}_{N}} \max _{p(x) \in \mathbb{F}_{P}} I(X ; X+Z) & =\max _{p(x) \in \mathbb{F}_{P}} \min _{p(z) \in \mathbb{F}_{P}} I(X ; X+Z) \\
& =I\left(X^{*} ; X^{*}+Z^{*}\right) \\
& =\frac{1}{2} \log \left(1+\frac{P}{N}\right) .
\end{aligned}
$$

Problem 2 (Erasure distortion)

The rate distortion function is given by

$$
R(D)=\min _{p(\hat{x} \mid x): \sum p(x, \hat{x}) d(x, \hat{x}) \leq D} I(X ; \hat{X})
$$

we proceed by finding the minimizing $p(\hat{x} \mid x)$. The infinite distortion constrains $p(0 \mid 1)=p(1 \mid 0)=$ 0 . By symmetry, $p(E \mid 0)=p(E \mid 1)=\alpha$ and $p(0 \mid 0)=p(1 \mid 1)=1-\alpha$.

For this distribution the distortion is $\sum p(x, \hat{x}) d(x, \hat{x})=\alpha \leq D$ and $I(X ; \hat{X})=1-\alpha$ which is minimized for $D=\alpha$. So the rate distortion function is $R(D)=1-D$ for $0 \leq D \leq 1$, and $R(D)=0$ for $D>1$.

To achieve this rate distortion function, we can proceed as follows: if D is rational (e.g. $D=\frac{k}{n}$ then we send only $n-k$ of any block of n bits. We reproduce these bits exactly and reproduce the remaining bits as erasures. Hence we can send information at rate $1-D$ and achieve a distortion D. IF D is irrational, we can get arbitrarily close to D by using longer and longer block lengths.

Problem 3 (Convexity of mutual information as a function of $w(y \mid x)$)

Consider the following chain of inequalities and equalities:

$$
\begin{aligned}
I\left(X ; Y_{\lambda} \mid Z\right) & =h(X \mid Z)-h\left(X \mid Y_{\lambda}, Z\right) \\
& \stackrel{(a)}{=} h(X)-h\left(X \mid Y_{\lambda}, Z\right) \\
& \stackrel{(b)}{\geq} h(X)-h\left(X \mid Y_{\lambda}\right) \\
& =I\left(X ; Y_{\lambda}\right)
\end{aligned}
$$

where (a) follows from independence of X and Z, and (b) follows since conditioning cannot increase entropy $(-h(X \mid Y, Z) \geq-h(X \mid Y))$. Also, notice that

$$
\begin{aligned}
I\left(X ; Y_{\lambda} \mid Z\right) & =I\left(X ; Y_{\lambda} \mid Z=1\right) \operatorname{Pr}(Z=1)+I\left(X ; Y_{\lambda} \mid Z=2\right) \operatorname{Pr}(Z=2) \\
& =I\left(X ; Y_{1}\right) \lambda+I\left(X ; Y_{2}\right)(1-\lambda)
\end{aligned}
$$

Hence, $I\left(X ; Y_{1}\right) \lambda+I\left(X ; Y_{2}\right)(1-\lambda) \geq I\left(X ; Y_{\lambda}\right)$, i.e. mutual information is convex in $w(y \mid x)$.

Problem 4

(a)

$$
\begin{align*}
I\left(X^{m} ; \hat{Y}^{m}\right) & =h\left(X^{m}\right)-h\left(X^{m} \mid \hat{X}^{m}\right) \tag{3}\\
& =\sum_{i=1}^{m} h\left(X_{i}\right)-\sum_{i=1}^{m} h\left(X_{i} \mid X^{i-1}, \hat{X}^{m}\right) \tag{4}\\
& \geq \sum_{i} h\left(X_{i}\right)-\sum_{i} h\left(X_{i} \mid \hat{X}_{i}\right) \quad \text { Follows by the fact that conditioning reduces entro(Dyy) } \\
& =\sum_{i} I\left(X_{i} ; \hat{X}_{i}\right) \tag{6}\\
& \geq \sum_{i} f\left(\hat{x}_{i} \mid x_{i}\right): \mathbb{E}\left(\hat{X}_{i}-X_{i}\right)^{2} \leq D_{i} \tag{7}\\
& =R\left(D_{i}\right) \text { by definition } \tag{8}\\
& =\sum_{i=1}^{m}\left(\frac{1}{2} \log \frac{\sigma_{i}^{2}}{D_{i}}\right)^{+} . \text {As you have derived in class, where } D_{i}=\mathbb{E}\left(X_{i}-\hat{X}_{i}\right) \tag{9}
\end{align*}
$$

(b) (5) is tight when $f\left(x^{m} \mid \hat{x}^{m}\right)=\prod_{i=1}^{m} f\left(x_{i} \mid \hat{x}_{i}\right)$.
(7) is tight for $f\left(x_{i} \mid \hat{x}_{i}\right)$ that achieves $I\left(X_{i} ; \hat{X}_{i}\right)=\left(\frac{1}{2} \log \frac{\sigma_{i}^{2}}{D_{i}}\right)^{+}$. For $D_{i} \leq \sigma_{i}$, choose $f\left(\hat{x}_{i}, x_{i}\right)$ such that $X_{i}=\hat{X}_{i}+Z_{i}, \hat{X}_{i}, Z_{i}$ being independent and each of $\hat{X}_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}-D_{i}\right)$ and $Z_{i} \sim \mathcal{N}\left(0, D_{i}\right)$. Thus $I\left(X_{i} ; \hat{X}_{i}\right)=\frac{1}{2} \log \frac{\sigma_{i}^{2}}{D_{i}}$. for $D_{i} \geq \sigma_{i}$, choose $\hat{X}_{i}=0$ with probability 1.
(c) So finally,

$$
R(D)=\min _{f\left(\hat{x}^{m} \mid x^{m}\right): \mathbb{E} d\left(X^{m}, \hat{X}^{m}\right) \leq D} I\left(X^{m} ; \hat{X}^{m}\right)
$$

where $\mathbb{E} d\left(X^{m}, \hat{X}^{m}\right)=\mathbb{E} \sum_{i}\left(\hat{X}_{i}-X_{i}\right)^{2}=\sum_{i} \mathbb{E}\left(\hat{X}_{i}-X_{i}\right)^{2}$.
For $f\left(x^{m} \mid \hat{x}^{m}\right)$ that you found in part(b),

$$
I\left(X^{m} ; \hat{Y}^{m}\right)=\sum_{i=1}^{m}\left(\frac{1}{2} \log \frac{\sigma_{i}^{2}}{D_{i}}\right)^{+}
$$

with $D_{i}=\mathbb{E}\left(\hat{X}_{i}-X_{i}\right)^{2}$. Thus the rate distortion function can be reduced to the following optimization problem:

$$
R(D)=\min _{\sum_{i} D_{i} \leq D} \sum_{i=1}^{m}\left(\frac{1}{2} \log \frac{\sigma_{i}^{2}}{D_{i}}\right)^{+} .
$$

(d) Let us work with \ln rather than \log in this part. Using Lagrange multipliers, we construct the functional

$$
J(D)=\sum_{i=1}^{m} \frac{1}{2} \ln \frac{\sigma_{i}^{2}}{D_{i}}+\lambda \sum_{i=1}^{m} D_{i}
$$

Differentiating with respect to D_{i} and setting equal to 0 ,

$$
\frac{\partial J}{\partial D_{i}}=-\frac{1}{2 D_{i}}+\lambda=0 \Longrightarrow D_{i}=\lambda^{\prime}
$$

Thus the optimum allotment of bits to the various desscriptions results in an equal distortion for each random variable as long as $\lambda^{\prime} \leq \sigma_{i}^{2}$ for all i. As the total allowable
distortion D increases, the constant λ^{\prime} increases until it exceeds σ_{i}^{2} for some i. At this point, the optimum solution is on the boundary of the allowable region of distortion and Kuhn-Tucker conditions should give the answer:
λ is chosen such that

$$
\frac{\partial J}{\partial D_{i}}=-\frac{1}{2 D_{i}}+\lambda \begin{cases}=0 & \text { if } D_{i}<\sigma_{i}^{2} \\ \leq 0 & \text { if } D_{i} \geq \sigma_{i}^{2}\end{cases}
$$

Now we check that

$$
D_{i}= \begin{cases}\lambda^{\prime} & \text { if } \lambda^{\prime}<\sigma_{i}^{2} \\ \sigma_{i}^{2} & \text { if } \lambda^{\prime} \geq \sigma_{i}^{2}\end{cases}
$$

in fact satisfy K-T conditions: For $D_{i}=\lambda^{\prime} \leq \sigma_{i}^{2},-\frac{1}{2 D_{i}}+\lambda=0$ as required. For $D_{i}=\sigma_{i}^{2} \leq \lambda^{\prime},-\frac{1}{2 D_{i}}+\lambda \leq-\frac{1}{2 \lambda^{\prime}}+\lambda \leq 0$ as required again. λ^{\prime} is chosen so that $\sum_{i} D_{i}=D$. By abuse of notation, λ^{\prime} is λ of part (d) of the homework sheet.

