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Solutions: Homework Set # 10

Problem 1 (A mutual information game)

(a) Let ab = arg mina f(a, b), i.e., f(a, b) ≥ f(ab, b), ∀a, b. Then by taking the maximum of
both sides,

max
b
f(a, b) ≥ max

b
f(ab, b) = max

b
min
a
f(a, b).

Note that the RHS does not depend on a anymore, while the LHS still depends on a.
However, since the inequality holds for all a and b, it also holds for the minimizing a, i.e.,

min
a

max
b
f(a, b) ≥ max

b
min
a
f(a, b).

(b)

I(X;X + Z∗) = h(X + Z∗)− h(X + Z∗|X)
= h(X + Z∗)− h(Z∗)
≤ h(X∗ + Z∗)− h(Z∗)
= I(X∗;X∗ + Z∗)

where the inequality follows from the fact that given the variance, the entropy is maximized
by the Gaussian distribution.

(c) 1. This is just expansion of mutual information as I(X;X + Z) = h(X + Z) − h(X +
Z|Z) = h(Y )− h(Z) since X and Z are independent.

2. Each entropy expression is replaced by its definition.

3. Note that fY ∗(y) = 1√
2π(P+N)

exp
(
− y2

2(P+N)

)
. Therefore, log fY ∗(y) = − y2

2(P+N) −
1
2 log 2π(P +N).∫
y
fY ∗(y) log fY ∗(y)dy =

∫
y
fY ∗(y)

[
− y2

2(P +N)
− 1

2
log 2π(P +N)

]
dy

= − 1
2(P +N)

∫
y
y2fY ∗(y)dy − 1

2
log 2π(P +N)

∫
y
fY ∗(y)dy

= − 1
2(P +N)

EY ∗ [y2]− 1
2

log 2π(P +N)

(a)
= − 1

2(P +N)
EY [y2]− 1

2
log 2π(P +N)

= − 1
2(P +N)

∫
y
y2fY (y)dy − 1

2
log 2π(P +N)

∫
y
fY (y)dy

=
∫
y
fY (y)

[
− y2

2(P +N)
− 1

2
log 2π(P +N)

]
dy

=
∫
y
fY (y) log fY ∗(y)dy
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where (a) follows from the fact that EY ∗ [y2] = EY [y2]. The same proof holds for Z
and Z∗.

4. Integration is a linear operation, and

−
∫
y
fY ∗(y) log fY ∗(y)dy +

∫
y
fY (y) log fY (y)dy =

∫
y
fY (y) [log fY (y)− log fY ∗(y)] dy

=
∫
y
fY (y) log

fY (y)
fY ∗(y)

dy.

Similarly, we can rewrite the two integrals on Z.

5. ∫
y
fY (y) log

fY (y)
fY ∗(y)

dy +
∫
z
fZ(z) log

fZ∗(z)
fZ(z)

dz

=
∫
y

(∫
z
fY,Z(y, z)dz

)
log

fY (y)
fY ∗(y)

dy +
∫
z

(∫
y
fY,Z(y, z)dy

)
log

fZ∗(z)
fZ(z)

dzdy

=
∫
y

∫
z
fY,Z(y, z) log

fY (y)
fY ∗(y)

dzdy +
∫
y

∫
z
fY,Z(y, z) log

fZ∗(z)
fZ(z)

dzdy

=
∫
y

∫
z
fY,Z(y, z) log

fY (y)fZ∗(z)
fY ∗(y)fZ(z)

dzdy

6. By concavity of the function log(·).
7. Note that Y = X∗ + Z. Therefore

fY,Z(y, z) = fX∗,Z(y − z, z) = fX∗(y − z)fZ(z),

where the last equality follows form the fact that X∗ and Z are independent.

8. This should be in fact equality. The reason is that fZ(z) can be cancelled from the
nominator and the denominator, and then we take out every term does not depend
on z from the inner integral.

9. Again since Y ∗ = X∗ + Z∗, and X∗ and Z∗ are independent, we have fY ∗(y) =∫
z fX∗(y − z)fZ∗(z)dz.

10. By cancelling fY
∗
(y), the remaining would be

∫
y fY (y)dy which equals 1 since fY (y)

is a probability distribution.

(d) Using parts (b) and (c) we have,

min
p(z)

max
p(x)

I(X;X + Z) ≤ max
p(x)
≤ max

p(x)
I(X;X + Z∗)

= I(X∗;X∗ + Z∗)
= min

p(z)
I(X∗;X∗ + Z)

≤ max
p(x)

min
p(z)

I(X;X + Z).. (1)

On the other hand, the result of part (a) for f(p(z), p(x)) = I(X;X + Z) gives us

min
p(z)

max
p(x)

I(X;X + Z) ≥ max
p(x)

min
p(z)

I(X;X + Z). (2)
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Combining (1) and (2), we have

min
p(z)∈FN

max
p(x)∈FP

I(X;X + Z) = max
p(x)∈FP

min
p(z)∈FP

I(X;X + Z)

= I(X∗;X∗ + Z∗)

=
1
2

log
(

1 +
P

N

)
.

Problem 2 (Erasure distortion)

The rate distortion function is given by

R(D) = min
p(x̂|x):

P
p(x,x̂)d(x,x̂)≤D

I(X; X̂),

we proceed by finding the minimizing p(x̂|x). The infinite distortion constrains p(0|1) = p(1|0) =
0. By symmetry, p(E|0) = p(E|1) = α and p(0|0) = p(1|1) = 1− α.

For this distribution the distortion is
∑
p(x, x̂)d(x, x̂) = α ≤ D and I(X; X̂) = 1−α which

is minimized for D = α. So the rate distortion function is R(D) = 1 −D for 0 ≤ D ≤ 1, and
R(D) = 0 for D > 1.

To achieve this rate distortion function, we can proceed as follows: if D is rational (e.g.
D = k

n then we send only n − k of any block of n bits. We reproduce these bits exactly and
reproduce the remaining bits as erasures. Hence we can send information at rate 1 − D and
achieve a distortion D. IF D is irrational, we can get arbitrarily close to D by using longer and
longer block lengths.

Problem 3 (Convexity of mutual information as a function of w(y|x))

Consider the following chain of inequalities and equalities:

I(X;Yλ|Z) =h(X|Z)− h(X|Yλ, Z)
(a)
=h(X)− h(X|Yλ, Z)
(b)

≥h(X)− h(X|Yλ)
=I(X;Yλ)

where (a) follows from independence of X and Z, and (b) follows since conditioning cannot
increase entropy (−h(X|Y, Z) ≥ −h(X|Y )). Also, notice that

I(X;Yλ|Z) =I(X;Yλ|Z = 1)Pr(Z = 1) + I(X;Yλ|Z = 2)Pr(Z = 2)
=I(X;Y1)λ+ I(X;Y2)(1− λ).

Hence, I(X;Y1)λ+ I(X;Y2)(1− λ) ≥ I(X;Yλ), i.e. mutual information is convex in w(y|x).
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Problem 4

(a)

I(Xm; Ŷ m) = h(Xm)− h(Xm|X̂m) (3)

=
m∑
i=1

h(Xi)−
m∑
i=1

h(Xi|Xi−1, X̂m) (4)

≥
∑
i

h(Xi)−
∑
i

h(Xi|X̂i) Follows by the fact that conditioning reduces entropy(5)

=
∑
i

I(Xi; X̂i) (6)

≥
∑
i

min
f(x̂i|xi):E(X̂i−Xi)2≤Di

I(Xi; X̂i) (7)

= R(Di) by definition (8)

=
m∑
i=1

(
1
2

log
σ2
i

Di

)+

. As you have derived in class, where Di = E(X̂i −Xi)2. (9)

(b) (5) is tight when f(xm|x̂m) =
∏m
i=1 f(xi|x̂i).

(7) is tight for f(xi|x̂i) that achieves I(Xi; X̂i) = (1
2 log σ2

i
Di

)+. For Di ≤ σi, choose f(x̂i, xi)
such that Xi = X̂i + Zi, X̂i, Zi being independent and each of X̂i ∼ N (0, σ2

i − Di) and

Zi ∼ N (0, Di). Thus I(Xi; X̂i) = 1
2 log σ2

i
Di

. for Di ≥ σi, choose X̂i = 0 with probability 1.

(c) So finally,
R(D) = min

f(x̂m|xm):Ed(Xm,X̂m)≤D
I(Xm; X̂m),

where Ed(Xm, X̂m) = E
∑

i(X̂i −Xi)2 =
∑

i E(X̂i −Xi)2.
For f(xm|x̂m) that you found in part(b),

I(Xm; Ŷ m) =
m∑
i=1

(
1
2

log
σ2
i

Di

)+

,

with Di = E(X̂i−Xi)2. Thus the rate distortion function can be reduced to the following
optimization problem:

R(D) = minP
i Di≤D

m∑
i=1

(
1
2

log
σ2
i

Di

)+

.

(d) Let us work with ln rather than log in this part. Using Lagrange multipliers, we construct
the functional

J(D) =
m∑
i=1

1
2

ln
σ2
i

Di
+ λ

m∑
i=1

Di.

Differentiating with respect to Di and setting equal to 0,

∂J

∂Di
= − 1

2Di
+ λ = 0 =⇒ Di = λ′.

Thus the optimum allotment of bits to the various desscriptions results in an equal dis-
tortion for each random variable as long as λ′ ≤ σ2

i for all i. As the total allowable
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distortion D increases, the constant λ′ increases until it exceeds σ2
i for some i. At this

point, the optimum solution is on the boundary of the allowable region of distortion and
Kuhn-Tucker conditions should give the answer:
λ is chosen such that

∂J

∂Di
= − 1

2Di
+ λ

{
= 0 if Di < σ2

i

≤ 0 if Di ≥ σ2
i

Now we check that

Di =
{
λ′ if λ′ < σ2

i

σ2
i if λ′ ≥ σ2

i

in fact satisfy K-T conditions: For Di = λ′ ≤ σ2
i , − 1

2Di
+ λ = 0 as required. For

Di = σ2
i ≤ λ′, − 1

2Di
+ λ ≤ − 1

2λ′ + λ ≤ 0 as required again. λ′ is chosen so that∑
iDi = D. By abuse of notation, λ′ is λ of part (d) of the homework sheet.
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