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Solutions: Homework Set # 8

Problem 1 (feedback capacity of erasure channel with memory)

(a) Since the bit gets through with probability 1−α, the average (effective) rate of transmission
is 1 − α.

Here is a simple transmission scheme: the transmitter keeps sending a bit until receives
a Y from the receiver over the feedback link. The receiver sends Y if it receives the
bit, otherwise it sends back an N. The probability that the channel is used k times for
transmitting a bit is the probability that the channel is in the erasure state for k− 1 time
slots, and in the correct state for the k-th time slot, which is Pr[T = k] = αk−1(1 − α).
Therefore the average number of times one has to use the channel to transmit one bit is

E[T ] =

∞∑

k=1

kαk−1(1 − α)

=
1

1 − α
.

Therefore the transmission rate, the average number bits transmitted per channel use, is
R = 1 − α.

(b) Note that you have already seen that for discrete memoryless channels, feedback does
not increase capacity. For discrete memoryless channels, we have already computed the
capacity of erasure channel. Thus

CFB = C = 1 − α.

Thus the above trivial transmission scheme achieves feedback capacity of this memoryless
erasure channel. Note that although the feedback does not change the channel capacity,
it can simplify the capacity achieving transmission scheme. In words, if the feedback was
not present, one should use a capacity achieving code with large enough codeword length,
and by encoding ad decoding the message can transmit at capacity rate, while a very
simple scheme can achieves the same performance when feedback is present.

(c) If the feedback is not present, the equivalent channel is an erasure channel with probability
of erasure being equal to the probability of being in the state E (πE). This can be found
by calculating the stationary distribution of the given Markov chain:

[πE , πC ] = [πE , πC ]P.

Thus πE = 5
7 and thus πC = 2

7 .
Remark: Remember that we calculated the capacity of a discrete memoryless erasure chan-
nel (no feedback) in class. If the probability of erasure was α, the capacity of the channel
was found to be 1 − α. Refer to the lecture notes for the details!
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(d) Here, W is the message that should be sent. To send W , we consider n times using the
channel. At time i, the input is Xi and the output is Yi based on the input Xi and the
channel probabilities that in fact depends on the state of the channel (Qi). Xi is a function
of W and Y i−1 = (Y1, Y2, . . . , Yi−1) because we have access to a feedback. So,

I. Qn is a function of Y n; the state of the channel only depends on its previous state
which is captured by the sequence of the channel outputs Y n. (If Yi is erased, Qi

has been in state E.)

II. W is independent of Qn.

III. Xi is a function of Y i−1 and W . Note that Y i−1 is the sequence of Y1, Y2, · · · , Yi−1.

IV. given Xi and Qi, Yi is independent of W .

V. conditioning decreases entropy.

VI. if Xi and Qi are given, then the ith output of the channel (Yi) is independent of Y i−1

and Qi−1
1 , Qn

i+1.

Remark: The crucial thing to note is that I(Xi;Yi|Qi) depends on i because Xi is a
function of Y i−1, and hence this could be a non-stationary process. However, the mutual
information is a concave function in its input distribution for a fixed channel. Hence, by
choosing an average distribution averaged over the Y i−1, i.e.,

p̄(Xi|W ) =
∑

yi−1

p(Xi|Y
i−1 = yi−1,W )p(yi−1|W ),

the mutual information would increase. Hence, if we define the stationary process {X̄i},
where the Xi are i.i.d. with the above marginal distribution, ad using the concavity of
mutual information, we obtain

I(Xi(y
i−1,W );Yi|Qi) ≤ I(X̄i(W );Yi|Qi).

Therefore,

1

n
I(W ;Y n) ≤

1

n

n∑

i=1

I(X̄i(W );Yi|Qi).

Note that by maximizing the input distribution and taking n large enough, the last ex-
pression above would be the capacity with no feedback. On the other hand the capacity
of a channel without feedback does not exceed the capacity without feedback. Thus

CNFB ≤ CFB ≤ lim
n→∞

1

n

n∑

i=1

max
p(X̄i)

I(X̄i;Yi|Qi) = CNFB.

Therefore, CFB = CNFB.
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Problem 2

(a)

f(p,w∗) − f(p,w) =
∑

x,y

p(x)q(y|x) log
w∗(x|y)

p(x)
−
∑

x,y

p(x)q(y|x) log
w(x|y)

p(x)

=
∑

x,y

p(x)q(y|x) log
w∗(x|y)

w(x|y)

(I)
=
∑

x,y

r(y)w∗(x|y) log
w∗(x|y)

w(x|y)

=
∑

y

r(y)
∑

x

w∗(x|y) log
w∗(x|y)

w(x|y)

=
∑

y

D (w∗(x|y) ‖ w(x|y))

(II)

≥ 0.

where (I) is due to the definition of w∗(x|y), and (II) holds since D(· ‖ ·) is always
non-negative, and r(y) ≥ 0.

(b) We have to maximize f(p,w) with respect to p subject to the constraint
∑

x p(x) = 1. By
taking the derivative of f with respect to p(x), we have

∂f(p,w)

∂p(x)
=
∑

y

q(y|x) log
w(x|y)

p(x)
−
∑

y

p(x)q(y|x)
−1

p(x)

(III)
=
∑

y

q(y|x) log
w(x|y)

p(x)
− 1.

where (III) holds since
∑

y q(y|x) = 1 for all x ∈ X . From the Kuhn-Tucker conditions,
assuming that the maximizing p will have positive components, these derivatives must all
equal to a constant λ. Therefore,

∑

y

q(y|x) log w(x|y) − log p(x)
∑

y

q(y|x)

︸ ︷︷ ︸

1

−1 = λ,

or

p(x) = exp(−1 − λ) exp

(
∑

y

q(y|x) log w(x|y)

)

.

where the constant λ should be chosen such that
∑

x p(x) = 1. Hence,

p(x) =
exp

(
∑

y q(y|x) log w(x|y)
)

∑

x′ exp
(
∑

y q(y|x′) log w(x′|y)
) . (1)
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(c) Note that C ≥ f(p(n+1), w(n)), by the definition of C. Therefore,

N∑

n=0

∣
∣
∣C − f(p(n+1), w(n))

∣
∣
∣ =

N∑

n=0

[

C − f(p(n+1), w(n))
]

≤

N∑

n=0

∑

x∈X

p∗(x) log
p(n+1)(x)

p(n)(x)

=
∑

x∈X

p∗(x) log

N∏

n=0

p(n+1)(x)

p(n)(x)

=
∑

x∈X

p∗(x) log
p(N+1)(x)

p(0)(x)

≤ max
x

log
p(N+1)(x)

p(0)(x)

≤ max
x

log
1

p(0)(x)
.

Note that the LHS grow with N , while the RHS does not depend on N . Therefore, we
can conclude that the sequence Cf(p(n+1), w(n)) is summable, and thus Cf(p(n+1), w(n))
must converge to zero at least as fast as 1/n.

Problem 3

Let J = {1, 2, . . . , |Y|} be the set of indices for the columns of matrix W . Hence, for any j ∈ J :

Wj =







w(yj |x1)
w(yj |x2)

. . .
w(yj |x|X |)







.

Let J1, . . . , Jl be a partition of J (in other words ∪l
k=1Jk = J, Jk ∩ Jk′ = ø) with the following

properties:

• For any two j, j′ ∈ Jk the column Wj is a permutation of elements of the column Wj′ . In
particular, notice that this implies

|X |
∑

i=1

w(yj |xi) =

|X |
∑

i=1

w(yj′ |xi) = λk for all j, j′ ∈ Jk. (2)

• Suppose Jk = {jk1
, jk2

, . . . , jk|Jk |
}, then the row i of a partition Jk is

Ri = [w(yk1
|xi) w(yk2

|xi) · · · w(yk|Jk|
|xi)].

For any two i, i′ ∈ {1, . . . , |X |}, Ri and Ri′ are permutations of each other. In particular,
this means that

|Jk|∑

j=1

w(ykj
|xi) log w(ykj

|xi) = µk for all i ∈ {1, . . . , |X |}. (3)

4



We know that a partition with these properties exists since our channel is symmetric (according
to the definition given in the problem).

(a) We know that KKT conditions are necessary and sufficient conditions for an input distri-
bution to be capacity achieving. Hence, if we can prove that the uniform input distribution
satisfies the KKT conditions, then we know that this distribution is capacity achieving.
What we need to prove is ∂I(X;Y )

∂p(xi)
= λ for any i ∈ {1, . . . , |X |}, assuming p(xi) = 1

|X | .
From class we know that

∂I(X;Y )

∂p(xi)
=

|Y|
∑

j=1

w(yj |xi) log
w(yj |xi)

∑|X |
i=1 p(xi)w(yj |xi)

− 1,

hence we need to prove that the first part of this expression does not depend on i for a
uniform input distribution.

∂I(X;Y )

∂p(xi)
− 1 =

l∑

k=1

|Jk|∑

j=1

w(ykj
|xi) log

w(ykj
|xi)

∑|X |
i=1 p(xi)w(ykj

|xi)

=

l∑

k=1

|Jk|∑

j=1

w(ykj
|xi) log

w(ykj
|xi)|X |

∑|X |
i=1 w(ykj

|xi)

=

l∑

k=1

|Jk|∑

j=1

w(ykj
|xi) log

w(ykj
|xi)|X |

λk

=
l∑

k=1

|Jk|∑

j=1

w(ykj
|xi)(log w(ykj

|xi)|X | − log λk)

=
l∑

k=1

µk − log λk + log |X |,

which is not a function of i. In the calculations above, the second equality follows from
assuming the uniform input distribution, the third equality follows from (2) and the final
equality follows from (3).

(b) From KKT conditions we also know that the capacity is:

C =

|Y|
∑

j=1

w(yj |xi) log
w(yj |xi)

∑|X |
i=1 p(xi)w(yj |xi)

=

|Y|
∑

j=1

w(yj |xi) log
w(yj |xi)|X |
∑|X |

i=1 w(yj |xi)

=

|Y|
∑

j=1

w(yj |xi)



log w(yj |xi) + log |X | − log

|X |
∑

i=1

w(yj |xi)





=

|Y|
∑

j=1

w(yj |xi) log w(yj |xi) + log |X | −

|Y|
∑

j=1

w(yj |xi) log

|X |
∑

i=1

w(yj |xi)

= log |X | − H|Y|(Ri) −

|Y|
∑

j=1

w(yj |xi) log

|X |
∑

i=1

w(yj |xi),
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where i is an index of an arbitrary input symbol, which is what needed to be proven.0

(The definition of the symmetric channel given in this problem states that rows of parti-
tions are permutations of each other. From this it can be deduced that the rows of the
transition matrix W are also permutations of each other and hence H|Y|(Ri) is the same
for all i.)

Problem 4

(a-b) Note that the covariance matrix of Z is (1 − λ)K1 + λK2. However, Z is not a Gaussian
random variable. In fact, we are not going to find the distribution of Z, and knowing the
covariance of Z suffices for upper bounding h(Z). Since a Gaussian distribution maximizes
the entropy for a given covariance matrix, we have

h(Z) ≤
1

2
log(2πe)n|(1 − λ)K1 + λK2|.

(c)

h(Z|θ) = h(Z|θ = 0)Pr(θ = 0) + h(Z|θ = 1)Pr(θ = 1)

= (1 − λ)
1

2
log(2πe)n|K1| + λ

1

2
log(2πe)n|K2|

(d) We know that conditioning always reduces entropy. Hence, h(Z) ≥ h(Z|θ). Replacing the
upper bound of h(Z) and the value of h(Z|θ), we get

|(1 − λ)K1 + λK2| ≥ |K1|
1−λ|K2|

λ,

which means that determinant is a concave function.
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