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Solutions: Homework Set # 7

Problem 1

(a) We need to prove that

(xn, yn) ∈ A(n)
ε (X,Y )⇔ xn ∈ A(n)

ε (X), zn ∈ A(n)
ε (Z),

where yn = xn ⊕ zn. First we calculate some entropies:

H(X) =1
H(Z) =H(Y |X) = −0.1 log(0.1)− 0.9 log(0.9) = H2(0.1)

H(X,Y ) =H(X) +H(Y |X) = 1 +H(Y |X) = 1 +H2(0.1).

Notice that p(xn) = (1
2)n, ∀xn, hence − 1

n log p(xn) = 1 which implies xn ∈ A
(n)
ε (X)

for any xn. On the other hand, (xn, yn) ∈ A
(n)
ε (X,Y ) implies that − 1

n log p(xn, yn) ∈
(H(X,Y )− ε,H(X,Y )− ε). Since p(xn, yn) = (1

2)n(1− p)n−kpk = p(xn)p(zn), where k is
the number of places x and y differ, it follows that

− 1
n

log p(xn, yn) =− 1
n

log(
1
2

)n(1− p)n−kpk

=− 1
n

log p(xn)p(zn)

=− 1
n

log p(xn)− 1
n

log p(zn)

=1− 1
n

log p(zn) ∈ (H(X,Y )− ε,H(X,Y )− ε).

So, − 1
n log p(zn) ∈ (H(Z) − ε,H(Z) − ε), i.e. zn is typical. Using the same equations

in reverse direction, we see that assuming typical zn implies that − 1
n log p(xn, yn) ∈

(H(X,Y )− ε,H(X,Y )− ε).
It remains to show that yn is typical. Notice that yi = xi ⊕ zi. Then

p(Yi = 0) =p(Xi = 0, Zi = 0) + p(Xi = 1, Zi = 1)
=p(Xi = 0)p(Zi = 0) + p(Xi = 1)p(Zi = 1)

=
1
2

(1− p) +
1
2
p =

1
2
.

Hence, − 1
n log p(yn) = 1, ∀yn i.e. every yn is typical.

(b) For a fixed codeword xn(i), the event that (xn(i), Y n) is jointly typical is equivalent to
the event that zn ∈ A(n)

ε (Z). From the AEP, for large enough n,

Pr
(
zn ∈ A(n)

ε (Z)
)
> 1− ε
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(c) Let A denote the event that there exists a codeword xn(i), i 6= 1 which is jointly typical
with Yn. Using the union bound and the fact that xn(i)’s are i.i.d, we see that

Pr (A) =Pr (E2 ∪ . . . ∪ E2nR |xn(1) was sent)

≤
2nR∑
i=1

Pr(Ei|xn(1))

=
2nR∑
i=1

Pr(E2|xn(1))

≤2nRPr
(

(xn, Y n) ∈ A(n)
ε (X,Y )

)
.

By joint AEP We know that the probability that yn is jointly typical with an independent
xn(i) is 2−n(I(X;Y )−R). So,

Pr (A) ≤ 2nε2−n(I(X;Y )−R).

(d)

Pr(error|xn(1) was sent) ≤Pr((xn, yn) /∈ A(n)
ε (X,Y ) + Pr(A)

<ε+ 2nε2−n(I(X;Y )−R),

which is smaller than 2ε when R < I(X;Y ) and n is sufficiently large. The probability of
error is then

Pr(error) =
2nR∑
i=1

Pr(error|xn(i) was sent)Pr(xn(i) was sent) = Pr(error|xn(1) was sent) < 2ε.

Problem 2

(a) Each of the channels are binary symmetric, and their capacity can be found as

CG = 1−H2(PG)

CB = 1−H2(PB)

As we have seen before, the optimal input distribution for a binary symmetric channel is
the uniform distribution, regardless of the cross-over probability of the channel:

Pr(X = 0) = Pr(X = 1) =
1
2
.

(b) Having the transition matrix P =
[

1− g g
b 1− b

]
, the stationary distribution of the

Markov process is π = [πB πG] such that π = πP .

πB = πB(1− g) + πGb = πB(1− g) + (1− πB)b

⇒

{
πB = b

b+g

πG = g
b+g .
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(c) In fact, we only derive a transmission rate and show that this rate is achievable. Showing
the optimality of this rate is more technical.

We claim that R = πBCB + πGCG = 1 − bH2(PB)+gH2(PG)
b+g is achievable. We propose

the following simple scheme to transmit at rate R. The transmitter designs two capacity
achieving codes CB and CG for transmission over the bad and good channels, respectively.
Depends on the state of the channel, it sends the first remaining bit (the next bit in the
sequence) of the corresponding codeword. Since the receiver also knows the state of the
channel, it can collect all the bits and then re-arrange them to obtain channel output as if
the same codeword was used for transmission on a single binary symmetric channel. For
large duration of time, the channel would be in the bad state for πB fraction of time, and
in the good state for the remaining πG fraction. Since we transmit at capacity rate for
each fraction, the total rate would be R = πBCB + πGCG.

(d) Since the channel alphabets for the states are two disjoint sets (YB = {0, 1} and YG =
{2, 3}), the receiver can determine the channel state based on the received symbol.

(e)

CNSI
(a)
= max

p(x)

1
n
I(Xn;Y n, Sn)

(b)
= max

p(x)

1
n
I(Xn;Y n|Sn)

(c)
= max

p(x)

1
n

(H(Y n|Sn)−H(Y n|Xn, Sn))

(d)

≤ max
p(x)

1
n

(
n∑
i=1

H(Yi|Sn)−
n∑
i=1

H(Yi|Xi, Si)

)
(e)

≤ max
p(x)

1
n

(
n∑
i=1

H(Yi|Si)−
n∑
i=1

H(Yi|Xi, Si)

)
(f)
= max

p(x)

1
n

n∑
i=1

I(Xi;Yi|Si)

• (a) is just the definition of the capacity, given the fact that the receiver can determine
the state of the channel from the output;

• (b) holds since the transmitter has no side information about the channel state, and
so Xn is independent of Sn:

I(Xn;Y n, Sn) = I(Xn;Sn)︸ ︷︷ ︸
0

+I(Xn;Y n|Sn).

• (c) is just expansion of the mutual information.

• in (d), we have used the chain rule, H(Y n|Sn) =
∑n

i=1H(Yi|Y i−1, Sn) and increased
each term by removing Y i−1 from conditioning. Note that conditioning reduces the
entropy. The same argument holds because the first summation is the expansion of
H(Y n|Sn) using the chain rule. The second term is replaced by a larger term, since
removing conditioning reduces the entropy. Note that the output of the channel only
depends on its input and state, and is independent of anything else given X and S.
Therefore, this inequality is tight.
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• (e) is again by the fact that conditioning reduces entropy. This is also tight, since
there is no feedback in the channel, and therefore previous states of the channel do
not affect the input nor the output of the channel.

• (f) is by definition of mutual information. Note that is the capacity where the current
state of the channel is known.

Problem 3

(a) To find the capacity of the product channel, we must find the distribution p(x1, x2) on
the input alphabet X1×X2 that maximizes I(X1, X2;Y1, Y2). Since the joint distribution
p(x1, x2, y1, y2) = p(x1, x2)p(y1|x1)p(y2|x2),

Y1 → X1 → X2 → Y2

forms a Markov chain and thus

I(X1, X2;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X1, X2) (1)
= H(Y1, Y2)−H(Y1|X1, X2)−H(Y2|X1, X2) (2)
= H(Y1, Y2)−H(Y1|X1)−H(Y2|X2) (3)
≤ H(Y1) +H(Y2)−H(Y1|X1)−H(Y2|X2) (4)
= I(X1;Y1) + I(X2;Y2) (5)

where the second and third equalities follow from the stated Markovity. Furthermore, the
inequality 4 holds with equality for independent X1 and X2. Thus

Ca = max
p(x1,x2)

I(X1, X2;Y1, Y2)

= max
p(x1,x2)=p(x1)×p(x2)

I(X1;Y1) + max
p(x1,x2)=p(x1)×p(x2)

I(X2;Y2)

= max
p(x1)

I(X1;Y1) + max
p(x2)

I(X2;Y2)

= C1 + C2.

(b) 1.

I(X;Y1, Y2) = H(Y1, Y2)−H(Y1, Y2|X)
= H(Y1, Y2)−H(Y1|X)−H(Y2|X)
= H(Y1) +H(Y2|Y1)− 2H(Y1|X)
= H(Y1) +H(Y2)− 2H(Y1|X)− I(Y1;Y2)
= 2H(Y1)− 2H(Y1|X)− I(Y1;Y2)
= 2I(X;Y1)− I(Y1;Y2),

and the fifth equality follows from

p(y1) =
∑
x

p(y1, x) =
∑
x

p(x)p(y1|x) =
∑
x

p(x)p(y2|x) =
∑
x

p(x, y2) = p(y2).
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2.

Cb = max
p(x)

I(x;Y1, Y2)

= max
p(x)

2I(X;Y1)− I(Y1;Y2)

≤ 2 max
p(x)

I(X;Y1)

= 2C1.

Problem 4

As this is a symmetric channel the capacity is achieved by using an uniform input distribution
p(i) = 1

|X | = 1
5 .

(a)

C =I(Xuniform;Y )
=H(X)−H(Y |X)

=
5∑
i=1

1
5

log 5−
5∑
i=1

1
5
H(Y |X = i)

= log 5− 1.

(b) Consider the following code:

f(m0) =00
f(m1) =12
f(m2) =24
f(m3) =31
f(m4) =43.

One can verify that the possible outputs for any two of these codewords are distinct.
Hence, given the output, we can never confuse different inputs.

If the messages m0 . . .m4 are equiprobable, we are essentially transmitting log 5 bits of
information while using the channel only twice. The rate of this zero-error code is therefore
log 5

2 . Notice that 1 < log 5
2 < log 5 − 1. In fact, the zero-error capacity for this channel

is equal to the Shannon capacity. For more details, see “On the Shannon capacity of a
graph” by Laszlo Lovasz, IEEE Transactions on Information Theory, vol. IT-25, pp 1-7,
Jan 1979.
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