Solutions: Homework Set \# 4

Problem 1

(a) The stationary distribution is:

$$
\mu_{0}=\frac{p_{10}}{p_{01}+p_{10}}, \quad \mu_{0}=\frac{p_{01}}{p_{01}+p_{10}}
$$

So the entropy rate is

$$
H\left(X_{2} \mid X_{1}\right)=\mu_{0} H\left(p_{01}\right)+\mu_{1} H\left(p_{10}\right)=\frac{p_{10} H\left(p_{01}\right)+p_{01} H\left(p_{10}\right)}{p_{01}+p_{10}}
$$

(b) Since the process has only two states the entropy rate is at most 1 bit and it can be achieved iff $p_{01}=p_{10}=1 / 2$.
(c) The entropy rate is

$$
H\left(X_{2} \mid X_{1}\right)=\mu_{0} H(p)+\mu_{1} H(1)=\frac{H(p)}{p+1}
$$

(d) After some mathematics, we see that the maximum happens at $p^{\star}=(3-\sqrt{5}) / 2=0.382$ and the maximum will be:

$$
\max _{p} H\left(X_{2} \mid X_{1}\right)=\frac{H\left(p^{\star}\right)}{1+p^{\star}}=0.694 \quad \text { bits }
$$

Note that $\frac{1}{p^{\star}}$ is the Golden Ratio!
(e) Note that the Markov chain of part (c) doesn't allow consecutive ones. Consider any allowable sequence of symbols of length t. If the first symbol is 1 , then the next symbol must be 0 . The remaining $N(t-2)$ remaining symbols can make any allowable sequence. If the first symbol is 0 , then the remaining $N(t-1)$ symbols can make any allowable sequences. So we have:

$$
N(t)=N(t-1)+N(t-2) \quad N(1)=2, N(2)=3
$$

The sequence $N(t)$ grows exponentially, i.e. $N(t) \approx c \lambda^{t}$ where λ is te solution of the characteristic equation

$$
1=z^{-1}+z^{-2}
$$

Solving this equation yields to $\lambda=(1+\sqrt{5}) / 2$. Therefore

$$
h_{0}=\lim _{n \rightarrow \infty} \frac{1}{t} \log N(t)=\log \frac{1+\sqrt{5}}{2}=0.694 \quad \text { bits }
$$

Since there are only $N(t)$ possible outcomes for $X_{1}, X_{2}, \cdots, X_{t}$ an upper bound on $H\left(X_{1}, X_{2}, \cdots, X_{t}\right)$ is $\log N(t)$, so the entropy rate of the Markov chain of part (c) is at most H_{0}. And we saw in part (d) that this bound is achievable.

Problem 2

(a) $\log (n+1)$ bits are needed to be reserved for the description of k.

$$
N=\binom{n}{k}
$$

(b) We need $\left\lceil\log \binom{n}{k}\right\rceil$ bits to describe which of the N sequences we are decoding with.
(c)

$$
\begin{align*}
l\left(x^{n}\right) & =\lceil\log (n+1)\rceil+\left\lceil\log \binom{n}{k}\right\rceil \\
& \leq \log (n)+\log \binom{n}{k}+3 \tag{1}
\end{align*}
$$

Since $\binom{n}{k} \leq 2^{n H\left(\frac{k}{n}\right)} \sqrt{\frac{n}{\pi k(n-k)}}$

$$
\begin{align*}
\log \binom{n}{k} & \leq \log \left(2^{n H\left(\frac{k}{n}\right)} \sqrt{\frac{n}{\pi k(n-k)}}\right) \\
& =n H\left(\frac{k}{n}\right)+\log \sqrt{\frac{n}{\pi k(n-k)}} \tag{2}
\end{align*}
$$

So

$$
\begin{align*}
l\left(x^{n}\right) & \leq \log n+n H\left(\frac{k}{n}\right)-\frac{1}{2} \log n+\log \sqrt{\frac{n^{2}}{\pi k(n-k)}}+3 \tag{3}\\
& =\frac{1}{2} \log n+n H\left(\frac{k}{n}\right) \underbrace{-\frac{1}{2} \log \left(\pi \frac{k}{n} \times \frac{n-k}{n}\right)+3}_{\text {does not grow with } n} \tag{4}
\end{align*}
$$

(d)

$$
\begin{gather*}
\frac{l\left(x^{n}\right)-l^{*}\left(x^{n}\right)}{l^{*}\left(x^{n}\right)} \leq \frac{\frac{1}{2} \log n+n H\left(\frac{k}{n}\right)+O(c)-n H\left(\frac{k}{n}\right)}{n H\left(\frac{k}{n}\right)}=\frac{1 / 2 \log n}{n H\left(\frac{k}{n}\right)}+\frac{O(c)}{n H\left(\frac{k}{n}\right)} \tag{5}\\
\lim _{n \rightarrow \infty} \frac{l\left(x^{n}\right)-l^{*}\left(x^{n}\right)}{l^{*}\left(x^{n}\right)}=0 \tag{6}
\end{gather*}
$$

Problem 3

(a) Initially, the input sequence is empty and the corresponding interval is $[0,1)$. The CDF after the first input symbol is:

Thus, the interval corresponding to A is $[0,0.2)$.
(b) When the second symbol (C) arrives, the interval corresponding to $(A C)$ is $[0.1,0.2)$.
(c) To encode the midpoint of these intervals Shannon-Fano-Eliad coding is used.

So, the binary representation of A is the binary representation of 0.1 , which is $0.00011001 \ldots$.
As discussed in class, $\left\lceil\log \left(\frac{1}{0.2}\right)\right\rceil+1=4$ is the length of the codeword assigned to the point 0.1 , thus A is encoded to 0001
The interval corresponding to $A C$ is $[0.1,0.2)$ and the midpoint is 0.15 ($0.0010011 \ldots$ in binary). The length of this description is $\left\lceil\log \left(\frac{1}{0.1}\right)\right\rceil+1=5$, thus the representation is 00100 .
(d) $A C C B$ has a corresponding interval $[0.16,0.175$) and the probability of the sequence is $0.2 \cdot 0.5 \cdot 0.5 \cdot 0.3=0.1 \cdot 0.15=0.015$.
The midpoint is 0.167 which is $0.00101010101 \ldots$. The length of description is $\left\lceil\log \left(\frac{1}{0.015}\right)\right\rceil+$ $1=8$. Thus, the codeword representing $A C C B$ is 00101010 .
(e) If the sequence to be encoded is represented by the interval $[a, b)$, the bits of the binary representation of $\frac{a+b}{2}$ which we can be sure of (i.e. they are fixed no matter how the sequence continues) are the common bits of the binary representations of a and b. This is because based on how the sequence continues, the interval can converge to any point in the interval (extremes: a and b).
So, to answer (e) we know that $a=0.16$ and $b=0.175$.

$$
\begin{align*}
(a)_{2} & =0.001010 \ldots \tag{7}\\
(b)_{2} & =0.001011 \ldots \tag{8}
\end{align*}
$$

Thus, 5 bits is what we can be sure of (out of the 8 bit representation).

Problem 4

(a) The parsing is as follows:

$$
\begin{equation*}
0,00,000,1,10,101,0000,01,1010,1 \ldots \tag{9}
\end{equation*}
$$

and the encoding is
$(0000,0),(0001,0),(0010,0),(0000,1),(0100,0),(0101,1),(0011,0),(0001,1),(0110,0), \ldots$
(b)

$$
\begin{equation*}
0,1,00,01,10,11, \ldots \tag{11}
\end{equation*}
$$

(c)

$$
\begin{equation*}
0,00,000,0000, \ldots \tag{12}
\end{equation*}
$$

