Solutions: Homework Set \# 2

Problem 1

(a) $\quad X_{i}$'s are independent and identically distrtibuted, so

$$
\begin{equation*}
H\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\sum_{i=1}^{n} H\left(X_{i}\right)=\sum_{i=1}^{n} H(p)=n H(p) \tag{1}
\end{equation*}
$$

(b) $f\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\left(Z_{1}, Z_{2}, \ldots, Z_{K}\right)$, where K is a function of $X_{1}, X_{2}, \ldots, X_{n}$ as well. So $\left(Z_{1}, Z_{2}, \cdots, Z_{K}, K\right)$ is a function of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$. We show that in general,

$$
\begin{equation*}
H(X) \geq H(f(X)), \tag{2}
\end{equation*}
$$

for any function f.

$$
\begin{equation*}
H(X)=H(X, f(X)=H(f(X))+\underbrace{H(X \mid f(X))}_{\geq 0 \text { (for discrete entropy) }} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\text { therefore } H(X) \geq H(f(X)) \text {. } \tag{4}
\end{equation*}
$$

This concludes that $H\left(X_{1}, X_{2}, \ldots, X_{n}\right) \geq H\left(Z_{1}, Z_{2}, \cdots, Z_{K}, K\right)$
(c) Chain rule for entropy.
(d)

$$
\begin{equation*}
H\left(Z_{1}, Z_{2}, \ldots, Z_{K} \mid K\right)=\sum p(K=k) \underbrace{H\left(Z_{1}, Z_{2}, \ldots, Z_{K} \mid K=k\right)}_{H\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)} \tag{5}
\end{equation*}
$$

As $\{Z i\}$ s are i. i. d. Bernoulli(1/2)

$$
\begin{equation*}
H\left(Z_{1}, Z_{2}, \ldots, Z_{k}\right)=\sum_{i=1}^{k} H\left(Z_{i}\right)=k \tag{6}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
H\left(Z_{1}, Z_{2}, \ldots, Z_{K} \mid K\right)=\sum k \cdot p(K=k)=E(K) \tag{7}
\end{equation*}
$$

(e) $H(K) \geq 0$ for discrete entropy.
(f) Generate a good map f on sequences of length 4: we know that all sequences with the same numbre of ones are equally likely.
An example of a map f to generate random bits is:
$0000 \rightarrow \Lambda$

```
\(0001 \rightarrow 00 \quad 0010 \rightarrow 01 \quad 0100 \rightarrow 10 \quad 1000 \rightarrow 11\)
\(0011 \rightarrow 00 \quad 0110 \rightarrow 01 \quad 1100 \rightarrow 10 \quad 1001 \rightarrow 11\)
\(1010 \rightarrow 0 \quad 0101 \rightarrow 1\)
\(1110 \rightarrow 00 \quad 1101 \rightarrow 01 \quad 1011 \rightarrow 10 \quad 0111 \rightarrow 11\)
\(1111 \rightarrow \Lambda\)
```

Note that K is not fixed and we have both $K=1$ and $K=2$ in the above example.
Note further that the above map f has the property that
$\operatorname{Pr}\left\{Z_{1} Z_{2}=00 \mid K=2\right\}=\operatorname{Pr}\left\{Z_{1} Z_{2}=01 \mid K=2\right\}=\operatorname{Pr}\left\{Z_{1} Z_{2}=10 \mid K=2\right\}=\operatorname{Pr}\left\{Z_{1} Z_{2}=11 \mid K=2\right\}$ and $\operatorname{Pr}\left\{Z_{1}=0 \mid K=1\right\}=\operatorname{Pr}\left\{Z_{1}=1 \mid K=1\right\}$.

Problem 2

(a) 1. Left hand side:

$$
\begin{equation*}
H(X, Y, Z)-H(X, Y)=H(Z \mid X, Y) \tag{8}
\end{equation*}
$$

Right hand side:

$$
\begin{equation*}
H(X, Z)-H(X)=H(Z \mid X) \tag{9}
\end{equation*}
$$

Conditioning reduces entropy, thus, $H(Z \mid X) \geq H(Z \mid X, Y)$
2.

$$
\begin{gather*}
I(X ; Z \mid Y) \geq I(Z ; Y \mid X)-I(Z ; Y)+I(X ; Z) \tag{10}\\
\Leftrightarrow I(X ; Z \mid Y)+I(Z ; Y) \geq I(Z ; Y \mid X)+I(X ; Z) \tag{11}\\
\Leftrightarrow I(X, Y ; Z) \geq I(Z ; X, Y) \tag{12}
\end{gather*}
$$

and indeed equality holds.
(b) 1 .

$$
\begin{equation*}
I(X ; Y \mid Z)<I(X ; Y) \tag{13}
\end{equation*}
$$

If $X \longrightarrow Y \longrightarrow Z$ forms a Markov chain, then

$$
\begin{equation*}
H(X \mid Y Z)=H(X \mid Y) \tag{14}
\end{equation*}
$$

Thus,

$$
\begin{gather*}
I(X ; Y \mid Z)=\underbrace{Z}_{\text {conditioning reduces entropy }} H(X \mid Z)-H(X \mid Y Z)=H(X \mid Z)-H(X \mid Y) \tag{15}
\end{gather*}
$$

A trivial example is $Y=X$ and $Z=Y$.
2. Let X, Y be independent random variables and $Z=X+Y$

$$
\begin{gather*}
I(X ; Y)=0 \tag{17}\\
I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y Z)=H(X \mid Z) \geq 0=I(X ; Y) \tag{18}
\end{gather*}
$$

since $Z=X+Y, H(X \mid Y Z)=0$.

Problem 3

(a)

$$
\begin{gather*}
L(\mathcal{P})=\sum_{i=1}^{n} p_{i} \ell_{i} \tag{19}\\
H(\mathcal{P})=\sum_{i=1}^{n}-p_{i} \log p_{i} \tag{20}
\end{gather*}
$$

(b) We will discuss both parts (b) and (d) here.

Why isn't the nature of the problem simply a part of the Huffman procedure as most of you argued in your homeworks?
In Huffman procedure, we may not construct the whole sub-tree \mathcal{T}_{u} before continuing to the other nodes of \mathcal{T}^{u}. What we should do to check the validity of the Huffman trees, is to see whether \mathcal{T}^{u} and \mathcal{T}_{u} satisfy properties of optimal Huffman trees or not.
i) If $\ell_{i}<\ell_{j}$ then $p_{i} \geq p_{j}$;

- For \mathcal{T}^{u} : If $i \& j \neq u$, as \mathcal{T} is a valid Huffman tree the property still holds from first property of \mathcal{T}. Now consider that $i=u$: In this case by construction of \mathcal{T} probability of u is smaller than the nodes with less depth and is larger than the nodes with more depth, otherwise \mathcal{T} wouldn't be a valid Huffman tree. For $j=u$ it is similar.
- For \mathcal{T}_{u} : This property obviously holds because \mathcal{T}_{u} is part of \mathcal{T} and we previously had:

$$
\ell_{i}<\ell_{j} \Longleftrightarrow p_{i} \geq p_{j}
$$

And now:

$$
\ell_{i}-\ell<\ell_{j}-\ell \Longleftrightarrow \frac{p_{i}}{q} \geq \frac{p_{j}}{q} .
$$

ii) The two least probable codewords have the largest length.
iii) The two least probable codewords differ only in one bit.

These two properties are simply guaranteed by Huffman procedure.
(c)

$$
\begin{gather*}
L\left(\mathcal{P}^{u}\right)=\sum_{i=1}^{k} p_{i} \ell_{i}+q \ell \tag{21}\\
H\left(\mathcal{P}^{u}\right)=\sum_{i=1}^{k}-p_{i} \log p_{i}-q \log q \tag{22}
\end{gather*}
$$

(d) Refer to explanation in part (b).
(e)

$$
\begin{gather*}
L\left(\mathcal{P}_{u}\right)=\sum_{k+1}^{n} \frac{p_{i}}{q}\left(\ell_{i}-\ell\right) \tag{23}\\
H\left(\mathcal{P}_{u}\right)=\sum_{i=k+1}^{n}-\frac{p_{i}}{q} \log \frac{p_{i}}{q} \tag{24}
\end{gather*}
$$

(f)

$$
\begin{align*}
& L\left(\mathcal{P}^{u}\right)+q L\left(\mathcal{P}_{u}\right)=\sum_{i=1}^{k} p_{i} \ell_{i}+q \ell+q \sum_{i=k+1}^{n} \frac{p_{i}}{q}\left(\ell_{i}-\ell\right) \\
&=\sum_{i=1}^{n} p_{i} \ell_{i}+q \ell-\ell \sum_{i=k+1}^{n} p_{i} \tag{25}\\
&=\sum_{i=1}^{n} p_{i} \ell_{i} \\
&=L(\mathcal{P}) \\
& H\left(\mathcal{P}^{u}\right)+q H\left(\mathcal{P}_{u}\right)=\sum_{i=1}^{k}-p_{i} \log p_{i}-q \log q-q \sum_{i=k+1}^{n} \frac{p_{i}}{q} \underbrace{\log \frac{p_{i}}{q}}_{\underbrace{\log p_{i}-\log q}} \tag{26}\\
&=H(\mathcal{P})
\end{align*}
$$

Problem 4

(a) $\theta \rightarrow X \rightarrow T(X)$ forms a Markov chain. Applying data processing inequality,

$$
\begin{equation*}
I(\theta ; T(X)) \leq I(\theta ; X) \tag{27}
\end{equation*}
$$

If further $\theta \rightarrow T(X) \rightarrow X$ forms a Markov chain, then

$$
\begin{equation*}
I(\theta ; X) \leq I(\theta ; T(X)) \tag{28}
\end{equation*}
$$

And then equality holds.
(b) Because all sequences with the same number of ones are equally likely,

$$
\operatorname{Pr}\left\{\left(X_{1}, X_{2}, \cdots, X_{n}\right)=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \mid \sum_{i=1}^{n} X_{i}=k\right\}= \begin{cases}\frac{1}{\binom{n}{k}} & \text { if } \sum x_{i}=k \tag{29}\\ 0 & \text { otherwise }\end{cases}
$$

Which is independent of θ.
Thus $\theta \rightarrow \sum X_{i} \rightarrow\left(X_{1}, X_{2}, \cdots, X_{n}\right)$ forms a Markov chain. Therefore,

$$
\begin{equation*}
I(\theta ; X)=I(\theta ; T(X)) \tag{30}
\end{equation*}
$$

And this implies that $T(X)$ is a sufficient statistic for θ.

