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Solutions: Homework Set # 2

Problem 1

(a) Xi’s are independent and identically distrtibuted, so

H(X1,X2, ...,Xn) =

n∑

i=1

H(Xi) =

n∑

i=1

H(p) = nH(p) (1)

(b) f(X1,X2, ...,Xn) = (Z1, Z2, ..., ZK), where K is a function of X1,X2, ...,Xn as well. So
(Z1, Z2, · · · , ZK ,K) is a function of (X1,X2, ...,Xn). We show that in general,

H(X) ≥ H(f(X)), (2)

for any function f .

H(X) = H(X, f(X) = H(f(X)) + H(X|f(X))
︸ ︷︷ ︸

≥0(for discrete entropy)

(3)

therefore H(X) ≥ H(f(X)). (4)

This concludes that H(X1,X2, ...,Xn) ≥ H(Z1, Z2, · · · , ZK ,K)

(c) Chain rule for entropy.

(d)

H(Z1, Z2, ..., ZK |K) =
∑

p(K = k)H(Z1, Z2, ..., ZK |K = k)
︸ ︷︷ ︸

H(Z1,Z2,...,Zk)

(5)

As {Zi}s are i. i. d. Bernoulli(1/2)

H(Z1, Z2, ..., Zk) =

k∑

i=1

H(Zi) = k (6)

Thus,

H(Z1, Z2, ..., ZK |K) =
∑

k · p(K = k) = E(K) (7)

(e) H(K) ≥ 0 for discrete entropy.

(f) Generate a good map f on sequences of length 4: we know that all sequences with the
same numbre of ones are equally likely.

An example of a map f to generate random bits is:

0000 → Λ
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0001 → 00 0010 → 01 0100 → 10 1000 → 11

0011 → 00 0110 → 01 1100 → 10 1001 → 11

1010 → 0 0101 → 1

1110 → 00 1101 → 01 1011 → 10 0111 → 11

1111 → Λ

Note that K is not fixed and we have both K = 1 and K = 2 in the above example.

Note further that the above map f has the property that

Pr {Z1Z2 = 00|K = 2} = Pr {Z1Z2 = 01|K = 2} = Pr {Z1Z2 = 10|K = 2} = Pr {Z1Z2 = 11|K = 2}

and Pr {Z1 = 0|K = 1} = Pr {Z1 = 1|K = 1}.

Problem 2

(a) 1. Left hand side:
H(X,Y,Z) − H(X,Y ) = H(Z|X,Y ) (8)

Right hand side:
H(X,Z) − H(X) = H(Z|X) (9)

Conditioning reduces entropy, thus, H(Z|X) ≥ H(Z|X,Y )

2.
I(X;Z|Y ) ≥ I(Z;Y |X) − I(Z;Y ) + I(X;Z) (10)

⇔ I(X;Z|Y ) + I(Z;Y ) ≥ I(Z;Y |X) + I(X;Z) (11)

⇔ I(X,Y ;Z) ≥ I(Z;X,Y ) (12)

and indeed equality holds.

(b) 1.
I(X;Y |Z) < I(X;Y ) (13)

If X −→ Y −→ Z forms a Markov chain, then

H(X|Y Z) = H(X|Y ) (14)

Thus,
I(X;Y |Z) = H(X|Z) − H(X|Y Z) = H(X|Z) − H(X|Y ) (15)

≥
︸︷︷︸

conditioning reduces entropy

H(X) − H(X|Y ) = I(X;Y ) (16)

A trivial example is Y = X and Z = Y .

2. Let X,Y be independent random variables and Z = X + Y

I(X;Y ) = 0 (17)

I(X;Y |Z) = H(X|Z) − H(X|Y Z) = H(X|Z) ≥ 0 = I(X;Y ) (18)

since Z = X + Y , H(X|Y Z) = 0.
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Problem 3

(a)

L(P) =

n∑

i=1

pi ℓi (19)

H(P) =
n∑

i=1

−pi log pi (20)

(b) We will discuss both parts (b) and (d) here.

Why isn’t the nature of the problem simply a part of the Huffman procedure as most of
you argued in your homeworks?
In Huffman procedure, we may not construct the whole sub-tree Tu before continuing to
the other nodes of T u . What we should do to check the validity of the Huffman trees, is
to see whether T u and Tu satisfy properties of optimal Huffman trees or not.

i) If ℓi < ℓj then pi ≥ pj ;

– For T u : If i&j 6= u, as T is a valid Huffman tree the property still holds from
first property of T . Now consider that i = u: In this case by construction of
T probability of u is smaller than the nodes with less depth and is larger than
the nodes with more depth, otherwise T wouldn’t be a valid Huffman tree. For
j = u it is similar.

– For Tu : This property obviously holds because Tu is part of T and we previously
had:

ℓi < ℓj ⇐⇒ pi ≥ pj

And now:
ℓi − ℓ < ℓj − ℓ ⇐⇒

pi

q
≥

pj

q
.

ii) The two least probable codewords have the largest length.

iii) The two least probable codewords differ only in one bit.

These two properties are simply guaranteed by Huffman procedure.

(c)

L(Pu) =

k∑

i=1

pi ℓi +q ℓ (21)

H(Pu) =
k∑

i=1

−pi log pi − q log q (22)

(d) Refer to explanation in part (b).

(e)

L(Pu) =

n∑

k+1

pi

q
(ℓi − ℓ) (23)

H(Pu) =
n∑

i=k+1

−
pi

q
log

pi

q
(24)
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(f)

L(Pu ) + qL(Pu) =
k∑

i=1

pi ℓi +q ℓ+q

n∑

i=k+1

pi

q
(ℓi − ℓ)

=

n∑

i=1

pi ℓi +q ℓ− ℓ

n∑

i=k+1

pi

=

n∑

i=1

pi ℓi

= L(P)

(25)

H(Pu ) + qH(Pu) =

k∑

i=1

−pi log pi − q log q − q

n∑

i=k+1

pi

q
log

pi

q
︸ ︷︷ ︸

log pi−log q

= H(P)

(26)

Problem 4

(a) θ → X → T (X) forms a Markov chain. Applying data processing inequality,

I(θ;T (X)) ≤ I(θ;X). (27)

If further θ → T (X) → X forms a Markov chain, then

I(θ;X) ≤ I(θ;T (X)) (28)

And then equality holds.

(b) Because all sequences with the same number of ones are equally likely,

Pr{(X1,X2, · · · ,Xn) = (x1, x2, · · · , xn)
∣
∣

n∑

i=1

Xi = k} =







1(
n
k

) if
∑

xi = k

0 otherwise
(29)

Which is independent of θ.

Thus θ →
∑

Xi → (X1,X2, · · · ,Xn) forms a Markov chain. Therefore,

I(θ;X) = I(θ;T (X)) (30)

And this implies that T (X) is a sufficient statistic for θ.

4


