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Solutions: Homework Set # 1

Problem 1

By definition

L1 = min
instantaneous code

m∑

i=1

pil
100
i ,

and

L2 = min
uniquely decodable code

m∑

i=1

pil
100
i .

Since all instantaneous codes are uniquely decodable, the domain of the first minimization
problem is a subset of that of the second one. Therefore, L1 ≥ L2.

Assume C with codeword lengths l1, l2, . . . , lm be a uniquely decodable code which minimizes
L. Since all uniquely decodable codes satisfy the Kraft’s inequality (McMillan’s theorem), we
know that

m∑

i=1

D−li ≤ 1.

Hence, there exist an instantaneous code C′ with the same set of codeword lengths, and therefore
the same L. It is clear that the best solution for the first optimization problem cannot exceed
L, and L1 ≤ L2.

Summarizing the two inequalities, we obtain L1 = L2.
Remark. Note that although Huffman code is optimal for minimizing L(1) =

∑m
i=1 pili, but

they can be arbitrary far from the optimal code if want to minimize L(100) =
∑m

i=1 pil
100
i .

For example, assume we want to design a code for a source with four symbols (a, b, c, d) with
probability distribution (pa, pb, pc, pd) = (3

4 , 1
12 , 1

12 , 1
12 ). A binary Huffman code for this source

would be (0, 10, 110, 111) with codeword lengths (1, 2, 3, 3), and L(1) = 17
12 and L(100) ≃ 8.6 ×

1046. However, we can design another code (00, 01, 10, 11) with codeword lengths (2, 2, 2, 2) and
L(1) = 2, but L(100) = 1.3 × 1030, which is much smaller than L(100) of the Huffman code.
This example shows that depending on the objective function (what we want to be minimized),
different codes might be optimal.

Problem 2

Let lmax = max{l1, l2, · · · , lm}. There are Dlmax number of sequences with length lmax. Of these
sequences, if you fix the beginning to be ith codeword, you will have Dlmax−li sequences, in other
words, you have Dlmax−li sequences starting with the ith codeword. Since we have a prefix-free
code, no two codewords can start with the same codeword, so the total number of sequences
which start with some codeword is

m∑

i=1

Dlmax−li = Dlmax

m∑

i=1

D−li < Dlmax (1)
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Hence there exist some sequences which do not start with any codewords. These sequences
cannot be decoded.

alternatively we can say that if the Kraft inequality is not satisfied with equality, there are
some leaves in the tree that are not assigned to codewords and from these leaves one can find
a ‘escape route’ for the sequences which cannot be decoded. If one looks carefully to these two
solutions, can conclude that they are actually equivalent. This can be seen in the following tree
representation in the case of D = 2.
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Problem 3

The values of li
∗ that minimize

∑
pili

∗ are li
∗ = − log pi To obtain an optimal prefix free code

we use the Huffman procedure, which results in lengths
(
l1

H , l2
H . . .

)

(a)

(l1
∗, l2

∗, l3
∗, l4

∗, l5
∗) =

(

log
41

10
, log

41

9
, log

41

8
, log

41

7
, log

41

7

)

= (2.04, 2.19, 2.35, 2.55, 2.55) .

(2)

Huffman procedure:
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(
l1

H , l2
H , l3

H , l4
H , l5

H
)

= (2, 2, 2, 3, 3) . (3)

(b)

pi =

(
9

10

)(
1

10

)i−1

. (4)

li
∗ = − log

(
9

10

) (
1

10

)i−1

= log

(
10

9

)

+ (i − 1) log 10. (5)
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(l1
∗, l2

∗, . . .) = (0.152, 3.47, 6.8, 10.12, . . .) . (6)

Huffman procedure cannot be directly applied, due to the infinite nature of the code.
However, one can quickly realize that in the optimal code, codeword i is 111 . . . 10

︸ ︷︷ ︸

i−1

.
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= (1, 2, 3, 4, . . .) . (7)

Problem 4

(a) For any received sequence, work from the end with the inverse of the suffix code. The
inverted codewords satisfy the prefix-free condition, hence the code is uniquely decodable.

(b) Similarly to part (a), start by reversing the codewords. This operation does not change
the codeword lengths. The result is a prefix-free code for which the Kraft inequality is
satisfied. Hence, Kraft inequality is satisfied for the suffix-free code as well.

Problem 5

(a) The code will be
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L =
5∑

i=1

pili

=
2

15
× 3 +

2

15
× 3 +

1

3
× 3 +

1

5
× 2 +

1

5
× 2 =

34

15
= 2.27

(8)

(b)

L =
5∑

i=1

pili =
1

5
(3 + 3 + 2 + 2 + 2) = 2.4 (9)

(c) (2) and (3) cannot be binary Huffman codes. note that binary Huffman codes always have
their longest codewords in the form of siblings.

(d) 1. The code will be
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2. Three symbols are merged at each intermediate node.

(e) 1. The code will be
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2. In the furthest intermediate node from the root of the tree, 2 symbols are merged.
3 are merged in the other steps. This is due to the fact that the number of source
symbols is not of the form 1 + k(D − 1) where D = 3 in our examples and thus, it is
not possible to merge D = 3 symbols at all intermediate nodes. In part (3) we see in
an example why it is better to always merge fewer than D = 3 symbols, if necessary,
in the largest depth of the Huffman tree.

3. Consider the following two cases
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• If we merge 2 symbols in depth 3 of the tree, we would have the tree drawn in
part (1) and so

L1 =
6∑

i=1

pili =
1

16
× 3 +

1

16
× 3 +

1

16
× 2 +

1

4
× 2 +

1

4
× 1 +

5

16
× 1 = 1.56 (10)

• If we merge 2 symbols in the root, the code would be
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and

L2 =
6∑

i=1

pili =
1

16
× 3 +

1

16
× 3 +

1

16
× 3 +

1

4
× 2 +

1

4
× 2 +

5

16
× 1 = 1.88 (11)

L1 < L2.

Note that in the first case, both the symbol with probability 1/16 and the symbol
with probability 1/4 had smaller assigned codeword lengths.

This argument seems more obvious if you assume that the source produces 7 symbols
instead of 6, one(which we can call “dummy” symbol) has probability 0. So according
to Huffman procedure, it is always better to merge the “dummy” symbols in the first
step, i.e. at the furthest intermediate node.

Problem 6

(a)

Pr{Xn = vi|Xn−1 = vj,Xn−2 = vin−2
, · · · ,X0 = vi0} =

{
1

deg(vj ) if vi & vj are connected

0 else

This is because the particle picks the edge from vj to vi uniformly at random among the
dj adjacent edges of vj; and this is really independent of how the particle has reached vj.

Pr{Xn = vi|Xn−1 = vj} =

{
1

deg(vj)
if vi & vj are connected

0 else

And this verifies {Xn} being a Markov chain.

(b)

P =







0 1
3

1
3 0

1
2 0 1

3
1
2

1
2

1
3 0 1

2
0 1

3
1
3 0







(12)
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(c) Call the vector of stationary distribution µ.
So we have

µP = µ ⇒ µ =
(

2
10

3
10

3
10

2
10

)

(d) • Xn is a Markov chain as argued in (a).

• Pvi|vj
=

{
1
dj

if vi & vj are connected

0 else

• Take µ = {µj}
m
j=1, where

µj =
dj

∑m
j=1 dj

and see that

m∑

j=1

µjPji = µi =

m∑

j=1

dj
∑m

j=1 dj

( 1

dj

1{vj & vi connected}

)

=

m∑

j=1

1
∑m

j=1 dj

1{vj & vi connected}

= µi

(13)
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