# Homework Set #2 Due 9 October 2008 (Before 14:00 p.m., INR 038)

#### **Problem 1** (Pure Randomness and Biased Coins)

Let  $X_1, X_2, \ldots, X_n$  denote the outcomes of independent flips of a biased coin. Thus,  $Pr\{X_i = 1\} = p$ ,  $Pr\{X_i = 0\} = 1 - p$  where p is unknown. We wish to obtain a sequence  $Z_1, Z_2, \ldots, Z_K$  of *fair* coin flips from  $X_1, X_2, \ldots, X_n$ . Towards this end, let  $f : \mathcal{X}^n \to [0,1]^*$  (where  $[0,1]^* = [\Lambda, 0, 1, 00, 01, \ldots]$  is the set of all finite-length binary sequences, where  $\Lambda$  is the null string) be a mapping  $f(X_1, X_2, \ldots, X_n) = (Z_1, Z_2, \ldots, Z_K)$ , where  $Z_i \sim \text{Bernoulli}(\frac{1}{2})$ , and K may depend on  $(X_1, X_2, \ldots, X_n)$ . In order that the sequence  $Z_1, Z_2, \ldots$  appear to be fair coin flips, the map f from biased coin flips to fair coin flips must have the property that all  $2^k$  sequences  $Z_1, Z_2, \ldots, Z_k$  of a given length k have equal probability (possibly 0), for  $k = 1, 2, \ldots$ . For example, for n = 2 the map  $f(01) = 0, f(10) = 1, f(00) = f(11) = \Lambda$  has the property that  $Pr\{Z_1 = 1|K = 1\} = Pr\{Z_1 = 0|K = 1\} = \frac{1}{2}$ . Give reasons for the following inequalities:

$$nH(p) \stackrel{(a)}{=} H(X_1, X_2, \dots, X_n)$$

$$\stackrel{(b)}{\geq} H(Z_1, Z_2, \dots, Z_K, K)$$

$$\stackrel{(c)}{=} H(K) + H(Z_1, Z_2, \dots, Z_K | K)$$

$$\stackrel{(d)}{=} H(K) + \mathbb{E}[K]$$

$$\stackrel{(e)}{\geq} \mathbb{E}[K],$$

where  $\mathbb{E}$  is the expectation operator. Thus, no more than nH(p) fair coin tosses can be derived from  $(X_1, X_2, \ldots, X_n)$ , on the average. Exhibit a good map f on sequences of length 4.

### **Problem 2** (INEQUALITIES)

Let X, Y, and Z be joint random variables.

(a) Prove the following inequalities and find conditions for equality.

1. 
$$H(X, Y, Z) - H(X, Y) \le H(X, Z) - H(X).$$

- 2.  $I(X;Z|Y) \ge I(Z;Y|X) I(Z;Y) + I(X;Z).$
- (b) Give examples of X, Y, and Z such that
  - 1. I(X;Y|Z) < I(X;Y).
  - 2. I(X;Y|Z) > I(X;Y).

## Problem 3 (HUFFMAN SUB-TREE)

Let S be a source with alphabet  $\{x_1, \ldots, x_n\}$ , with associated probabilities  $\mathcal{P} = (p_1, \ldots, p_n)$ . We compress this source using a binary Huffman code, were a source symbol  $x_i$  is associated with a codeword  $c_i(x_i)$  of length  $\ell_i$ . Denote the corresponding binary tree by  $\mathcal{T}$ .

(a) Write expressions for the  $L(\mathcal{P})$ , average length of the code, and  $H(\mathcal{P})$ , the entropy of the source, in terms of  $\ell_i$ 's and  $p_i$ 's.

Denote the corresponding binary tree by  $\mathcal{T}$ . Let u be an intermediate node in the tree of distance  $\ell$  from the root, and denote by  $\mathcal{T}_u$  the sub-tree below u, and by  $\mathcal{S}_u$  the set of source symbols located on the leaves of this sub-tree, as shown in Fig. 3. Assume  $\mathcal{S}_u = \{x_k + 1, \dots, x_n\}$ . Also let  $\mathcal{T}^u$  be the same tree unless the sub-tree below u is merged in a node u, with probability  $q = \sum_{i=k+1}^{n} p_i$ .



- (b) Argue that Huffman tree  $\mathcal{T}^u$  is a valid Huffman code tree for the source  $\mathcal{S}^u = \{x_1, \ldots, x_k, u\}$ , with probability distribution  $\mathcal{P}^u = (p_1, \ldots, p_k, q)$ .
- (c) Express the  $L(\mathcal{P}^u)$  and  $H(\mathcal{P}^u)$ , the average length and entropy of the source  $\mathcal{S}^u$ , in terms of  $\ell_i$ 's,  $p_i$ 's,  $\ell$ , and q.
- (d) Argue that the sub-tree  $\mathcal{T}_u$  is a valid Huffman code tree for the source  $\mathcal{S}_u$ , with probability distribution  $\mathcal{P}_u = (\frac{p_{k+1}}{q}, \frac{p_{k+2}}{q}, \dots, \frac{p_n}{q})$ , where  $q = \sum_{i=k+1}^n p_i$ .
- (e) Express  $L(\mathcal{P}_u)$  and  $H(\mathcal{P}_u)$ , the average length and entropy of the source  $\mathcal{S}_u$ , in terms of  $\ell_i$ 's,  $p_i$ 's,  $\ell$ , and q.
- (f) How can we relate the entropy of the sources  $S_u$  and  $S^u$  to the entropy of the original source, S? Form a similar expression to relate the average lengths.

### **Problem 4** (SUFFICIENT STATISTICS)

Suppose that we have a family of probability mass functions  $\{f_{\theta}(x)\}$  indexed by  $\theta$ , and let X be a sample from a distribution in this family. Let T(X) be any statistic (e.g. sample mean or sample variance is a possible statistic.)

(a) Show that

$$I(\theta; T(X)) \le I(\theta; X)$$

for any distribution on  $\theta$ .

A statistic T(X) is called sufficient if equality holds for any distribution on  $\theta$ , or equivalently if  $\theta \to T(X) \to X$  forms a Markov chain for all distributions on  $\theta$ .

(b) Let X<sub>1</sub>, X<sub>2</sub>, ..., X<sub>n</sub>, X<sub>i</sub> ∈ {0,1}, be an independent and identically distributed (i.i.d.) sequence of coin tosses of a coin with an unknown parameter p = pr(X<sub>i</sub> = 1). Show that the number of 1's (∑<sub>i=1</sub><sup>n</sup> X<sub>i</sub>) is a sufficient statistic for p.