Homework Set \#10

Problem 1 (A mutual information game)

Consider the channel shown in Fig. 1

Figure 1: The channel
Throughout this problem we shall constrain the signal power

$$
\begin{equation*}
\mathbb{E}[X]=0, \quad \mathbb{E}\left[X^{2}\right]=P, \tag{1}
\end{equation*}
$$

and the noise power

$$
\begin{equation*}
\mathbb{E}[Z]=0, \quad \mathbb{E}\left[Z^{2}\right]=N, \tag{2}
\end{equation*}
$$

and assume that X and Z are independent. Let \mathcal{F}_{P} denotes the set of distributions with constraints in (1), and \mathcal{F}_{N} denotes the set of distributions with constraints in (2). For a given noise distribution, the channel capacity is given by $\max _{p(x) \in \mathcal{F}_{P}} I(X ; X+Z)$.

Now, consider the following game with two players, the noise player and the signal player. The noise player chooses a distribution on Z to minimize $I(X ; X+Z)$, while the signal player chooses a distribution on X to maximize $I(X ; X+Z)$. In the following you are asked to show that $X^{*} \sim \mathcal{N}(0, P)$ and $Z^{*} \sim \mathcal{N}(0, N)$ satisfy the saddle point conditions

$$
\begin{align*}
\min _{p(z) \in \mathcal{F}_{N}} \max _{p(x) \in \mathcal{F}_{P}} I(X ; X+Z) & =\max _{p(x) \in \mathcal{F}_{P}} \min _{p(z) \in \mathcal{F}_{P}} I(X ; X+Z) \tag{3}\\
& =I\left(X^{*} ; X^{*}+Z^{*}\right) \\
& =\frac{1}{2} \log \left(1+\frac{P}{N}\right) .
\end{align*}
$$

(a) Let $f(\cdot, \cdot)$ be an arbitrary function with two variables. Show that

$$
\min _{a} \max _{b} f(a, b) \geq \max _{b} \min _{a} f(a, b) .
$$

(b) Show that if the noise player chooses the Gaussian noise, the best the signal player can do is choose the Gaussian distribution, i.e., for all X such that $p(x) \in \mathcal{F}_{P}$,

$$
I\left(X ; X+Z^{*}\right) \leq I\left(X^{*} ; X^{*}+Z^{*}\right)
$$

(c) Given the fact that the signal player has chosen the Gaussian distribution, show that the worst noise is the Gaussian noise, i.e., for all Z such that $p(z) \in \mathcal{F}_{N}$,

$$
I\left(X^{*} ; X^{*}+Z^{*}\right) \leq I\left(X^{*} ; X^{*}+Z\right)
$$

Hint: Verify the following chain on equalities and inequalities.

$$
\begin{aligned}
& I\left(X^{*} ; X^{*}+Z^{*}\right)-I\left(X^{*} ; X^{*}+Z\right) \stackrel{(1)}{=} h\left(Y^{*}\right)-h\left(Z^{*}\right)-h(Y)+h(Z) \\
& \stackrel{(2)}{=}-\int_{y} f_{Y^{*}}(y) \log f_{Y^{*}}(y) d y+\int_{y} f_{Y}(y) \log f_{Y}(y) d y \\
&+\int_{z} f_{Z^{*}}(z) \log f_{Z^{*}}(z) d z-\int_{z} f_{Z}(z) \log f_{Z}(z) d z \\
& \stackrel{(3)}{=}-\int_{y} f_{Y}(y) \log f_{Y^{*}}(y) d y+\int_{y} f_{Y}(y) \log f_{Y}(y) d y \\
&+\int_{z} f_{Z}(z) \log f_{Z^{*}}(z) d z-\int_{z} f_{Z}(z) \log f_{Z}(z) d z \\
& \stackrel{(4)}{=} \int_{y} f_{Y}(y) \log \frac{f_{Y}(y)}{f_{Y^{*}}(y)} d y+\int_{z} f_{Z}(z) \log \frac{f_{Z^{*}}(z)}{f_{Z}(z)} d z \\
& \stackrel{(5)}{=} \int_{y} \int_{z} f_{Y, Z}(y, z) \log \frac{f_{Y}(y) f_{Z^{*}}(z)}{f_{Y^{*}}(y) f_{Z}(z)} d z d y \\
& \stackrel{(6)}{\leq} \log \int_{y} \int_{z} f_{Y, Z}(y, z) \frac{f_{Y}(y) f_{Z^{*}}(z)}{f_{Y^{*}}(y) f_{Z}(z)} d z d y \\
& \stackrel{(7)}{=} \log \int_{y} \int_{z} f_{Z}(z) f_{X^{*}}(y-z) \frac{f_{Y}(y) f_{Z^{*}}(z)}{f_{Y^{*}}(y) f_{Z}(z)} d y d z \\
& \stackrel{(8)}{\leq} \log \int_{y} \frac{f_{Y}(y)}{f_{Y^{*}}(y)} \int_{z} f_{X^{*}}(y-z) f_{Z^{*}}(z) d z d y \\
& \stackrel{(9)}{=} \log \int_{y} \frac{f_{Y}(y)}{f_{Y^{*}}(y)} f_{Y^{*}}(y) d y \\
& \stackrel{(10)}{=} \log 1=0 .
\end{aligned}
$$

(d) Using parts (b) and (c) conclude that

$$
\min _{p(z) \in \mathcal{F}_{N}} \max _{p(x) \in \mathcal{F}_{P}} I(X ; X+Z) \leq \max _{p(x) \in \mathcal{F}_{P}} \min _{p(z) \in \mathcal{F}_{N}} I(X ; X+Z),
$$

and combining it with the result of part (a), show (3).

Problem 2 (Erasure distortion)

Consider $X \sim \operatorname{Bernoulli}\left(\frac{1}{2}\right)$, and let the distortion measure be given by the matrix

$$
d(x, \hat{x})=\left[\begin{array}{ccc}
0 & 1 & \infty \\
\infty & 1 & 0
\end{array}\right]
$$

where $\hat{x} \in\{0, E, 1\}$ and E denotes the erasure symbol. Calculate the rate distortion function for this source. Can you suggest a simple scheme to achieve any value of the rate distortion function you found?

Let

$$
\left(X, Y_{1}\right) \sim p_{1}(x, y)=q(x) w_{1}(y \mid x)
$$

and

$$
\left(X, Y_{2}\right) \sim p_{2}(x, y)=q(x) w_{2}(y \mid x)
$$

where X, Y_{1} and Y_{2} are continuous random variables. Construct

$$
\left(X, Y_{\lambda}\right) \sim p_{\lambda}(x, y)=q(x) w_{\lambda}(y \mid x)=q(x)\left(\lambda w_{1}(y \mid x)+(1-\lambda) w_{2}(y \mid x)\right)
$$

Prove that $I\left(X ; Y_{\lambda}\right) \leq \lambda I\left(X ; Y_{1}\right)+(1-\lambda) I\left(X ; Y_{2}\right)$, i.e., prove that the mutual information $I(X ; Y)$ is a convex function of $w(y \mid x)$ for fixed $q(x)$.

Hint: Define a Bernoulli random variable Z independent of X, where $\operatorname{Pr}(Z=1)=1-\operatorname{Pr}(Z=$ $2)=\lambda$, and show that

$$
Y_{\lambda}= \begin{cases}Y_{1} & \text { if } Z=1 \\ Y_{2} & \text { if } Z=2\end{cases}
$$

Compare $I\left(X ; Y_{\lambda}\right)$ to $I\left(X ; Y_{\lambda} \mid Z\right)$.

Problem 4

Consider the case of representing m independent normal random sources $X_{1} \cdots X_{m}$ with squared-error distortion. Assume $X_{i} \sim \mathcal{N}\left(0, \sigma_{i}^{2}\right)$ and assume that we are given R bits with which to represent this random vectors. Through out this problem we answer to the natural question of how to allot these R bits to minimize the total distortion. Define $d\left(x^{m}, \hat{x}^{m}\right)=\sum_{i=1}^{m}\left(x_{i}-\hat{x}_{i}\right)^{2}$ and write the natural extension of the rate distortion function for this vector case:

$$
R(D)=\min _{f\left(\hat{x}^{m} \mid x^{m}\right): \mathbb{E} d\left(X^{m}, \hat{X}^{m}\right) \leq D} I\left(X^{m} ; \hat{X}^{m}\right)
$$

(a) Verify the following steps:

$$
\begin{align*}
I\left(X^{m} ; \hat{X}^{m}\right) & \geq \sum_{i} h\left(X_{i}\right)-h\left(X_{i} \mid \hat{X}_{i}\right) \tag{4}\\
& \geq \sum_{i} R\left(D_{i}\right) \tag{5}\\
& =\sum_{i}\left(\frac{1}{2} \log \frac{\sigma_{i}^{2}}{D_{i}}\right)^{+} \tag{6}
\end{align*}
$$

What is D_{i} in (5)?
(b) When is the above set of inequalities tight? i.e., when do we have $I\left(X^{m} ; \hat{X}^{m}\right)=\sum_{i=1}^{m}\left(\frac{1}{2} \log \frac{\sigma_{i}^{2}}{D_{i}}\right)^{+}$?
(c) Write D in terms of D_{i} and reformulate $R(D)$ as a minimization problem over $\sum_{i}\left(\frac{1}{2} \log \frac{\sigma_{i}^{2}}{D_{i}}\right)^{+}$.
(d) Use Kuhn-Tucker conditions to check that the rate distortion function is given by

$$
R(D)=\sum_{i=1}^{m} \frac{1}{2} \log \frac{\sigma_{i}^{2}}{D_{i}}
$$

where

$$
D_{i}= \begin{cases}\lambda & \text { if } \lambda<\sigma_{i}^{2} \\ \sigma_{i}^{2} & \text { if } \lambda \geq \sigma_{i}^{2}\end{cases}
$$

where λ is such that $\sum_{i} D_{i}=D$

