Homework Set \#9

Due 15 December 2008, before 12:00 noon, INR 031/032/038

Problem 1 (conditional differential entropy of Gaussian random vectors)

Consider the zero-mean jointly Gaussian random variables X and Y with covariance matrix

$$
\mathbb{E}\left[\binom{X}{Y}\left(\begin{array}{ll}
X & Y
\end{array}\right)\right]=\left(\begin{array}{ll}
\sigma_{x}^{2} & \rho \sigma_{x} \sigma_{y} \\
\rho \sigma_{x} \sigma_{y} & \sigma_{y}^{2}
\end{array}\right)
$$

i.e.,

$$
(X, Y) \sim p(x, y)=\frac{1}{2 \pi \sigma_{x} \sigma_{y} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left(\frac{x^{2}}{\sigma_{x}^{2}}+\frac{y^{2}}{\sigma_{y}^{2}}-\frac{2 \rho x y}{\sigma_{x} \sigma_{y}}\right)\right)
$$

(a) Find $f(x \mid y)$.
(b) Using (a), find $h(X \mid Y)$.
(c) Interpret $h(X \mid Y)$ for $\rho=0$ and $\rho=1$.
(d) Now assume that (\mathbf{X}, \mathbf{Y}) are jointly Gaussian random vectors with zero mean and covariance $\mathbb{E}\left[\binom{\mathbf{X}}{\mathbf{Y}}\left(\mathbf{X}^{\mathbf{t}} \mathbf{Y}^{\mathbf{t}}\right)\right]=\left(\begin{array}{ll}\mathbf{K}_{11} & \mathbf{K}_{12} \\ \mathbf{K}_{12} & \mathbf{K}_{22}\end{array}\right)$, where $\mathbf{X}^{\mathbf{t}}$ is the transpose of the \mathbf{X}. Find $f(\mathbf{X} \mid \mathbf{Y})$.
(e) Use (d) to find $h(\mathbf{X} \mid \mathbf{Y})$.

Problem 2 (Parallel Gaussian Channel)

Consider the Gaussian channel shown in Fig. 2 where $Z_{1} \sim \mathcal{N}\left(0, N_{1}\right)$ and $Z_{2} \sim \mathcal{N}\left(0, N_{2}\right)$ are independent Gaussian random variables and $Y_{i}=X_{i}+Z_{i}$.

Figure 1: Parallel Gaussian channels

We wish to allocate power to the two parallel channels. Let β_{1} and β_{2} be fixed. Consider a total cost constraint $\beta_{1} P_{1}+\beta_{2} P_{2} \leq \beta$, where P_{i} is the power allocated to the i-th channel and β_{i} is the cost per unit power in the channel. Thus, $P_{1} \geq 0$ and $P_{2} \geq 0$ can be chosen subject to the cost constraint β.
(a) For what value of β does the channel stop acting like a single channel and start acting like a pair of channels?
(b) Evaluate the capacity and find P_{1} and P_{2} that achieve capacity for $\beta_{1}=1, \beta_{2}=2, N_{1}=3$, $N_{2}=2$ and $\beta=10$.

Problem 3 (Two-look Gaussian Channel)

Consider the ordinary Gaussian channel with two correlated looks at X, that is, $Y=\left(Y_{1}, Y_{2}\right)$, where

$$
\begin{aligned}
& Y_{1}=X+Z_{1} \\
& Y_{2}=X+Z_{2}
\end{aligned}
$$

with a power constraint P on X, and $\left(Z_{1}, Z_{2}\right) \sim \mathcal{N}_{2}(0, \mathbf{K})$, where

$$
\mathbf{K}=\left[\begin{array}{cc}
N & N \rho \\
N \rho & N
\end{array}\right]
$$

Find the capacity for

Figure 2: Two-look Gaussian channel
(a) $\rho=1$
(b) $\rho=0$
(c) $\rho=-1$

Problem 4 (Intermittent additive noise channel)

Consider the channel $Y_{i}=X_{i}+Z_{i}$, where X_{i} is the transmitted signal with average power constraint P, Z_{i} is independent additive noise, and Y_{i} is the received signal. Let

$$
Z_{i}= \begin{cases}0 & \text { with probability } \frac{1}{10} \\ Z^{*} & \text { with probability } \frac{9}{10}\end{cases}
$$

where $Z^{*} \sim \mathcal{N}(0, N)$. Thus, Z has a mixture of a Gaussian distribution and a degenerate distribution with mass 1 at 0 .
(a) What is the capacity of this channel? This should be a pleasant surprise.
(b) How would you signal to achieve capacity?

