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Problem 1 (CONDITIONAL DIFFERENTIAL ENTROPY OFGAUSSIAN RANDOM VECTORS)

Consider the zero-mean jointly Gaussian random variablesX andY with covariance matrix
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(a) Findf(x|y).

(b) Using (a), findh(X|Y ).

(c) Interpreth(X|Y ) for ρ = 0 andρ = 1.

(d) Now assume that(X,Y) are jointly Gaussian random vectors with zero mean and covariance
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, whereXt is the transpose of theX. Findf(X|Y).

(e) Use (d) to findh(X|Y).

Problem 2 (PARALLEL GAUSSIAN CHANNEL)

Consider the Gaussian channel shown in Fig. 2 whereZ1 ∼ N (0,N1) andZ2 ∼ N (0,N2) are inde-
pendent Gaussian random variables andYi = Xi + Zi.
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Figure 1: Parallel Gaussian channels
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We wish to allocate power to the two parallel channels. Letβ1 andβ2 be fixed. Consider a total cost
constraintβ1P1 + β2P2 ≤ β, wherePi is the power allocated to thei-th channel andβi is the cost per
unit power in the channel. Thus,P1 ≥ 0 andP2 ≥ 0 can be chosen subject to the cost constraintβ.

(a) For what value ofβ does the channel stop acting like a single channel and start acting like a pair
of channels?

(b) Evaluate the capacity and findP1 andP2 that achieve capacity forβ1 = 1, β2 = 2, N1 = 3,
N2 = 2 andβ = 10.

Problem 3 (TWO-LOOK GAUSSIAN CHANNEL)

Consider the ordinary Gaussian channel with two correlatedlooks atX, that is,Y = (Y1, Y2), where

Y1 = X + Z1

Y2 = X + Z2

with a power constraintP onX, and(Z1, Z2) ∼ N2(0,K), where
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Find the capacity for

X (Y1, Y2)

Figure 2: Two-look Gaussian channel

(a) ρ = 1

(b) ρ = 0

(c) ρ = −1

Problem 4 (INTERMITTENT ADDITIVE NOISE CHANNEL)

Consider the channelYi = Xi + Zi, whereXi is the transmitted signal with average power constraint
P , Zi is independent additive noise, andYi is the received signal. Let

Zi =

{

0 with probability 1

10

Z∗ with probability 9

10
,

whereZ∗ ∼ N (0, N). Thus,Z has a mixture of a Gaussian distribution and a degenerate distribution
with mass1 at0.

(a) What is the capacity of this channel? This should be a pleasant surprise.

(b) How would you signal to achieve capacity?
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