ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 17
Introduction to Communication Systems
Solutions to Homework 9

Problem 1. 1. We see that

$$
4^{2}=16 \equiv 1(\bmod 15)
$$

Thus by exponentiating the above congruence we get

$$
\left(4^{2}\right)^{4} \equiv 1(\bmod 15)
$$

2. We have that $180=3 \times 5 \times 3 \times 4$. First notice that

$$
26 \equiv-3(\bmod 29)
$$

Thus

$$
(26)^{3} \equiv(-3)^{3} \equiv-27 \equiv 2(\bmod 29)
$$

Now taking the fifth power we get

$$
\left((26)^{3}\right)^{5} \equiv 2^{5} \equiv 32 \equiv 3(\bmod 29)
$$

Taking the third power we get

$$
\left(\left((26)^{3}\right)^{5}\right)^{3} \equiv 3^{3} \equiv 27 \equiv-2(\bmod 29)
$$

Finally taking the fourth power we get

$$
26^{180}=\left(\left(\left((26)^{3}\right)^{5}\right)^{3}\right)^{4} \equiv(-2)^{4} \equiv 16(\bmod 29)
$$

Thus

$$
26^{180} \equiv 16(\bmod 29)
$$

3. The last two digits of any number belongs to the set $\{00,01,02,03,04 \ldots, 97,98,99\}$. This set can be easily identified as the set of numbers modulo 100. Thus to find the last two digits 7^{20} we must find its modulo w.r.t 100 . We have

$$
7^{4}=2401 \equiv 1(\bmod 100)
$$

Thus

$$
7^{20}=\left(7^{4}\right)^{5} \equiv 1(\bmod 100)
$$

Thus the last two digits of 7^{20} are 0,1 .

Problem 2. We know from the Bezout's theorem that for any integers a, b

$$
\operatorname{gcd}(a, b)=\alpha a+\beta b
$$

for some integers α, β. Note that if the $\operatorname{gcd}(a, b)=1$, then we have that

$$
\alpha a=-\beta b+1
$$

Thus

$$
\alpha a \equiv 1(\bmod b)
$$

As a result we have that $\alpha=(a)^{-1}(\bmod b)$.

1. Using the extended Euclid's algorithm we have

$$
\operatorname{gcd}(7,26)=1=(-11) 7+(3) 26
$$

Thus $-11 \equiv 15 \equiv(7)^{-1}(\bmod 26)$.
2. Using the extended Euclid's algorithm we have

$$
\operatorname{gcd}(13,37)=1=(-17) 13+(6) 37
$$

Thus $-17 \equiv 20 \equiv(13)^{-1}(\bmod 37)$.
Problem 3. 1. Since m is a prime number the only integers in $1,2, \ldots, m^{3}$ which have a factor common with m are the multiples of m. The multiples of m less than m^{3} are $\left\{1 \cdot m, 2 \cdot m, 3 \cdot m, \ldots, m^{2} \cdot m\right\}$. Thus there are m^{2} multiples of m. As a result

$$
\phi\left(m^{3}\right)=m^{3}-m^{2}=m^{2}(m-1) .
$$

2. In general we again apply the same trick and count the number of integers less than m^{n} which are multiples of m, since they are the only numbers with a factor common to m. These are $\left\{1 \cdot m, 2 \cdot m, 3 \cdot m, \ldots, m^{2} \cdot m, \ldots, m^{n-1} \cdot m\right\}$. There are m^{n-1} such numbers, thus

$$
\phi\left(m^{n}\right)=m^{n}-m^{n-1}=m^{n-1}(m-1) .
$$

Problem 4. 1. $30=2 \times 3 \times 5$. We know that if m, n are relatively prime then $\phi(m n)=$ $\phi(m) \phi(n)$. Thus $\phi(30)=\phi(2) \phi(3) \phi(5)$. And for any prime number $m, \phi(m)=m-1$. Thus $\phi(30)=(2-1)(3-1)(5-1)=8$.
2. We know from the Euler's theorem that if a, m are relatively prime then

$$
a^{\phi(m)} \equiv 1(\bmod m)
$$

This implies that

$$
a^{\phi(m)-1} a \equiv 1(\bmod m) .
$$

Thus $a^{\phi(m)-1} \equiv a^{-1}(\bmod m)$. In this problem since 13,30 are relatively prime (since 13 is a prime number), we have

$$
13^{\phi(30)-1}=13^{7} \equiv(\bmod 30)
$$

using the fact that $\phi(30)=8$. But

$$
\begin{aligned}
& 13^{2}=169 \equiv-11(\bmod 30) \\
& 13^{4} \equiv(-11)^{2} \equiv 121 \equiv 1(\bmod 30) \\
& 13^{6}=\left(13^{4}\right)\left(13^{2}\right) \equiv(-11)(1)(\bmod 30) \\
& 13^{7}=\left(13^{6}\right)(13) \equiv(-11)(13) \equiv 7(\bmod 30)
\end{aligned}
$$

Thus $7 \equiv 13^{-1}(\bmod 30)$.

Problem 5. 1. We enumerate x starting from 0 to see that $x=7$ satisfes the congruence equation.
2. This congruence equation does not have a solution for x. To prove this let us assume that there exists a number $x \geq 0$ such that $2^{x} \equiv 3(\bmod 12)$. This implies that 12 divides $2^{x}-3$. This is not possible since $2^{x}-3$ is an odd number and 12 is an even number.

