ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 14
Introduction to Communication Systems
Solutions to Graded Homework 2

Problem 1. 1. Let $p_{2}=p_{3}=p_{4}=x$ and $p_{1}=y$. Clearly, $3 x+y=1$. Also for symbol a_{1} to get the smallest length, 1 , it should be picked last in the Huffman procedure. This implies that $y>2 x$. Thus we have $1-3 x>2 x$ which implies that $x<\frac{1}{5}$. As a result $y>1-\frac{3}{5}=\frac{2}{5}$. Thus $q=\frac{2}{5}$.
2. If $p_{1}=\frac{2}{5}$ then at the second step of the Huffman procedure we can chose either symbol a_{1} as one of the two symbols with smallest probabilities or not which leads to either $n_{1}=2$ or $n_{1}=1$.
3. For the general case, we will prove that the sum of the two smallest probabilities $p_{3}+p_{4}$ is less than or equal to $\frac{2}{5}$. If we can prove this, then again as argued previously we would have $n_{1}=1$ since $p_{1}>\frac{2}{5}$ and $p_{1}>p_{2}$. To prove the above claim, assume the contrary. Thus assume that $p_{3}+p_{4}>\frac{2}{5}$. This implies that at least one of p_{3} or p_{4} is strictly greater than $\frac{1}{5}$. Now since $p_{2} \geq p_{3} \geq p_{4}$, this implies that $p_{2} \geq \frac{1}{5}$. As a result $p_{2}+p_{3}+p_{4}>\frac{3}{5}$ which would mean that $p_{1}<\frac{2}{5}$, a contradiction (because we are given that $p_{1}>\frac{2}{5}$).

Problem 2. 1. (i) The Huffman tree is a complete binary tree of depth 3. This is show in Figure 1.

Figure 1: Huffman tree for Problem 2.1. It is a complete binary tree of depth 3.
(ii) The Huffman tree is the complete binary tree of depth n.
(iii) The entropy is equal to n. Just knowing that the entropy is n and there are 2^{n} symbols allows me to consider a code which has all the codewords of length n and enumerate all possible n-tuples. Clearly this code has average length equal to n. Also it is easy to check that the code is prefix-free, which makes the code an optimal one. In fact this is the only possible optimal code for such a source.
2. The length of the codewords are $1,2, \ldots, n-2, n-1, n-1$. The Huffman tree is shown in Figure 2.

Figure 2: Huffman tree for Problem 2.2

Problem 3. 1. The average length is given by

$$
\sum_{i} p_{i} \log _{2} \frac{1}{q_{i}}=\sum_{i} i p_{i}
$$

Note that here when we ask "average length of your code", we mean that since we think the source has distribution given by q_{i} and since the probabilities are di-adic (meaning inverse power of 2), one possible optimal code would have lengths given by $\log _{2} \frac{1}{q_{i}}$, and this is what we use.
2.

$$
\begin{aligned}
-D(p \| q) & =-\sum_{i} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right) \\
& =\sum_{i} p_{i} \log \left(\frac{q_{i}}{p_{i}}\right) \\
& \leq \sum_{i} p_{i}\left(\frac{q_{i}}{p_{i}}-1\right) \\
& =1-1=0
\end{aligned}
$$

where we used the fact that $\log (x) \leq x-1$ for all $x \geq 0$.
3.

$$
\begin{aligned}
\sum_{i} p_{i} \log \left(\frac{1}{q_{i}}\right) & =\sum_{i} p_{i} \log \left(\frac{p_{i}}{q_{i}}\right)+\sum_{i} p_{i} \log \frac{1}{p_{i}} \\
& =H(S)+D(p \| q)
\end{aligned}
$$

Problem 4.

$$
H\left(S_{2}\right)=\sum_{i \neq 21} p_{i} \log \frac{1}{p_{i}}+p_{21}^{\prime} \log \frac{1}{p_{21}^{\prime}}+p_{21}^{\prime \prime} \log \frac{1}{p_{21}^{\prime \prime}}
$$

where $p_{21}^{\prime}+p_{21}^{\prime \prime}=p_{21}$. We have

$$
p_{21}^{\prime} \log \frac{1}{p_{21}^{\prime}}+p_{21}^{\prime \prime} \log \frac{1}{p_{21}^{\prime \prime}}>p_{21} \log \frac{1}{p_{21}}=p_{21}^{\prime} \log \frac{1}{p_{21}}+p_{21}^{\prime \prime} \log \frac{1}{p_{21}}
$$

which is true since $\log \frac{p_{21}}{p_{21}^{2}} \geq 0$ and $\log \frac{p_{21}}{p_{21}^{\prime 1}} \geq 0$. Thus $H\left(S_{2}\right)>H\left(S_{1}\right)$.
2. Let C_{2} be an optimal code for S_{2}. We can create a code for S_{1} by taking the same codewords as C_{2} for all the alphabets except u and for u we take the codeword which has the smallest length amongst u and $\ddot{\mathrm{u}}$ in C_{2}. Clearly the new code for S_{1} is still uniquely decodable and its average length is smaller than L_{2} by construction. Thus clearly any optimal code for S_{1} will be better than one constructed above, hence $L_{1} \leq L_{2}$.
Solutions for second part of Problem 4:

1. Clearly the code is still prefix-free since adding the tail bits do not make the codewords prefix of any other code.
2.

$$
\begin{aligned}
L_{1}^{\prime}-L_{1} & =\sum_{i \neq 21} p_{i} l_{i}+p_{21}^{\prime}\left(l_{21}+1\right)+p_{21}^{\prime \prime}\left(l_{21}+1\right)-\sum_{i \neq 21} p_{i} l_{i}-p_{21} l_{21} \\
& =p_{21}
\end{aligned}
$$

3. Since L_{2} is the length of the optimal code for S_{2} we have $L_{2} \leq L_{1}^{\prime}$. Thus we have

$$
\begin{aligned}
L_{2}-L_{1} & \leq L_{1}^{\prime}-L_{1} \\
& =p_{21}
\end{aligned}
$$

