ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 14	Introduction to Communication Systems
Solutions to Graded Homework 2	November 6, 2008

- PROBLEM 1. 1. Let $p_2 = p_3 = p_4 = x$ and $p_1 = y$. Clearly, 3x + y = 1. Also for symbol a_1 to get the smallest length, 1, it should be picked last in the Huffman procedure. This implies that y > 2x. Thus we have 1 3x > 2x which implies that $x < \frac{1}{5}$. As a result $y > 1 \frac{3}{5} = \frac{2}{5}$. Thus $q = \frac{2}{5}$.
 - 2. If $p_1 = \frac{2}{5}$ then at the second step of the Huffman procedure we can chose either symbol a_1 as one of the two symbols with smallest probabilities or not which leads to either $n_1 = 2$ or $n_1 = 1$.
 - 3. For the general case, we will prove that the sum of the two smallest probabilities p_3+p_4 is less than or equal to $\frac{2}{5}$. If we can prove this, then again as argued previously we would have $n_1 = 1$ since $p_1 > \frac{2}{5}$ and $p_1 > p_2$. To prove the above claim, assume the contrary. Thus assume that $p_3 + p_4 > \frac{2}{5}$. This implies that at least one of p_3 or p_4 is strictly greater than $\frac{1}{5}$. Now since $p_2 \ge p_3 \ge p_4$, this implies that $p_2 \ge \frac{1}{5}$. As a result $p_2 + p_3 + p_4 > \frac{3}{5}$ which would mean that $p_1 < \frac{2}{5}$, a contradiction (because we are given that $p_1 > \frac{2}{5}$).
- PROBLEM 2. 1. (i) The Huffman tree is a complete binary tree of depth 3. This is show in Figure 1.

Figure 1: Huffman tree for Problem 2.1. It is a complete binary tree of depth 3.

- (ii) The Huffman tree is the complete binary tree of depth n.
- (iii) The entropy is equal to n. Just knowing that the entropy is n and there are 2^n symbols allows me to consider a code which has all the codewords of length n and enumerate all possible n-tuples. Clearly this code has average length equal to n. Also it is easy to check that the code is prefix-free, which makes the code an optimal one. In fact this is the only possible optimal code for such a source.
- 2. The length of the codewords are 1, 2, ..., n 2, n 1, n 1. The Huffman tree is shown in Figure 2.

Figure 2: Huffman tree for Problem 2.2

PROBLEM 3. 1. The average length is given by

$$\sum_{i} p_i \log_2 \frac{1}{q_i} = \sum_{i} i p_i$$

Note that here when we ask "average length of your code", we mean that since we think the source has distribution given by q_i and since the probabilities are di-adic (meaning inverse power of 2), one possible optimal code would have lengths given by $\log_2 \frac{1}{q_i}$, and this is what we use.

2.

$$-D(p||q) = -\sum_{i} p_i \log(\frac{p_i}{q_i})$$
$$= \sum_{i} p_i \log(\frac{q_i}{p_i})$$
$$\leq \sum_{i} p_i(\frac{q_i}{p_i} - 1)$$
$$= 1 - 1 = 0$$

where we used the fact that $\log(x) \le x - 1$ for all $x \ge 0$.

3.

$$\sum_{i} p_i \log(\frac{1}{q_i}) = \sum_{i} p_i \log(\frac{p_i}{q_i}) + \sum_{i} p_i \log\frac{1}{p_i}$$
$$= H(S) + D(p||q)$$

Problem 4. 1.

$$H(S_2) = \sum_{i \neq 21} p_i \log \frac{1}{p_i} + p'_{21} \log \frac{1}{p'_{21}} + p''_{21} \log \frac{1}{p''_{21}}$$

where $p'_{21} + p''_{21} = p_{21}$. We have

$$p'_{21}\log\frac{1}{p'_{21}} + p''_{21}\log\frac{1}{p''_{21}} > p_{21}\log\frac{1}{p_{21}} = p'_{21}\log\frac{1}{p_{21}} + p''_{21}\log\frac{1}{p_{21}}$$

which is true since $\log \frac{p_{21}}{p'_{21}} \ge 0$ and $\log \frac{p_{21}}{p''_{21}} \ge 0$. Thus $H(S_2) > H(S_1)$.

2. Let C_2 be an optimal code for S_2 . We can create a code for S_1 by taking the same codewords as C_2 for all the alphabets except u and for u we take the codeword which has the smallest length amongst u and \ddot{u} in C_2 . Clearly the new code for S_1 is still uniquely decodable and its average length is smaller than L_2 by construction. Thus clearly any optimal code for S_1 will be better than one constructed above, hence $L_1 \leq L_2$.

Solutions for second part of Problem 4:

- 1. Clearly the code is still prefix-free since adding the tail bits do not make the codewords prefix of any other code.
- 2.

$$L'_{1} - L_{1} = \sum_{i \neq 21} p_{i}l_{i} + p'_{21}(l_{21} + 1) + p''_{21}(l_{21} + 1) - \sum_{i \neq 21} p_{i}l_{i} - p_{21}l_{21}$$
$$= p_{21}$$

3. Since L_2 is the length of the optimal code for S_2 we have $L_2 \leq L'_1$. Thus we have

$$L_2 - L_1 \le L_1' - L_1 \\= p_{21}$$