- $y[n]=x[-n]$

Linearity: $\mathcal{H}\left\{a x_{1}[n]+b x_{2}[n]\right\}=a x_{1}[-n]+b x_{2}[-n]=a \mathcal{H}\left\{x_{1}[n]\right\}+b \mathcal{H}\left\{x_{2}[n]\right\}$. Therefore, \mathcal{H} is linear.

Time-invariance: $\mathcal{H}\left\{x\left[n-n_{0}\right]\right\}=x\left[-n-n_{0}\right] \neq y\left[n-n_{0}\right]$. Therefore, \mathcal{H} is not time-invariant.
Stability: If $|x[n]| \leq M$, then $|\mathcal{H}\{x[n]\}| \leq M$. Therefore, \mathcal{H} is BIBO stable.
Causality: For negative time indices, the output depends on the future values of the input. Therefore, \mathcal{H} is not causal.

- $y[n]=e^{j \omega n} x[n]$

Linearity: $\mathcal{H}\left\{a x_{1}[n]+b x_{2}[n]\right\}=e^{j \omega n}\left(a x_{1}[n]+b x_{2}[n]\right)=a \mathcal{H}\left\{x_{1}[n]\right\}+b \mathcal{H}\left\{x_{2}[n]\right\}$.
Therefore, \mathcal{H} is linear.
Time-invariance: $\mathcal{H}\left\{x\left[n-n_{0}\right]\right\}=e^{j \omega n} x\left[n-n_{0}\right]=e^{j \omega n_{0}} y\left[n-n_{0}\right]$. Therefore, \mathcal{H} is not time-invariant (unless $\omega=0$).
Stability: If $|x[n]| \leq M$, then $|\mathcal{H}\{x[n]\}| \leq M$. Therefore, \mathcal{H} is BIBO stable.
Causality: The output at any given time depends only on the current input. Therefore, \mathcal{H} is causal.

- $y[n]=\sum_{k=n-n_{0}}^{n+n_{0}} x[k]$.

Linearity: $\mathcal{H}\left\{a x_{1}[n]+b x_{2}[n]\right\}=\sum_{k=n-n_{0}}^{n+n_{0}}\left(a x_{1}[k]+b x_{2}[k]\right)=a \mathcal{H}\left\{x_{1}[n]\right\}+b \mathcal{H}\left\{x_{2}[n]\right\}$. Therefore, \mathcal{H} is linear.
Time-invariance: $\mathcal{H}\left\{x\left[n-n_{0}\right]\right\}=\sum_{k=n-n_{0}}^{n+n_{0}} x\left[k-n_{0}\right]=\sum_{k=n-2 n_{0}}^{n} x[k]=y\left[n-n_{0}\right]$. Therefore, \mathcal{H} is time-invariant.
Stability: If $|x[n]| \leq M$, then $|\mathcal{H}\{x[n]\}| \leq\left|2 n_{0}+1\right| M$. Therefore, \mathcal{H} is BIBO stable.
Causality: \mathcal{H} is not causal.
Impulse response: For $x[n]=\delta[n], y[n]=h[n]$:

$$
h[n]= \begin{cases}1 & \text { if }|n| \leq\left|n_{0}\right|, \\ 0 & \text { otherwise }\end{cases}
$$

- $y[n]=n y[n-1]+x[n]$, such that if $x[n]=0$ for $n<n_{0}$, then $y[n]=0$ for $n<n_{0}$. Since \mathcal{H} is recursive, we can not use the same technique as before. Note that all inputs $x[n]$ can be expressed as a linear combination of delayed impulses: $x[n]=$ $\sum_{k=-\infty}^{\infty} x[k] \delta[n-k]$. Therefore, to show that \mathcal{H} is linear or time-invariant, we can restrict the input to delayed impulses. If $x[n]=\delta[n]$, we can obtain $y[n]$ by recursion:

$$
\begin{equation*}
h[n]=y[n]=n!u[n] \tag{1}
\end{equation*}
$$

If $x[n]=a \delta[n]+b \delta[n]:$

$$
y[n]=(a+b) n!u[n]
$$

Therefore, \mathcal{H} is linear.
To check if \mathcal{H} is time-invariant, consider $x[n]=\delta[n-1]$. It is easy to check that $H \delta[n-1] \neq h[n-1]$.

Stability: It is clear from (1) that the system is unstable.
Causality: \mathcal{H} is causal.
Problem 2. For a low pass filter with cutoff frequency ω_{b}, we have $h[n]=\frac{\sin \left(\omega_{b} n\right)}{\pi n}$. Thus by the modulation theorem the DTFT of $2 h[n] \cos \left(\omega_{0} n\right)$ would be $H_{b p}\left(e^{j \omega}\right)$.

Problem 3.

- $x[n]=\delta[n-3]+\delta[n+3]$

$$
X(z)=\sum x[n] z^{-n}=z^{-3}+z^{3}
$$

There are 3 poles at $z=0$ and 3 poles at $z=\infty$, so ROC is all z except 0 and ∞.

- $x[n]=n a^{n} u[n]$. From Z-Transform properties,

$$
\begin{aligned}
& x[n] \leftrightarrow X(z) \quad \text { with } \mathrm{ROC}=\mathrm{R} \\
\Rightarrow & n x[n] \leftrightarrow-z \frac{\partial X}{\partial z} \quad \text { with } \mathrm{ROC}=\mathrm{R}
\end{aligned}
$$

Then, let us define $x_{1}[n]=a^{n} u[n]$.

$$
X_{1}(z)=\sum_{n=0}^{\infty}\left(a z^{-1}\right)^{n}
$$

This series converges to $\frac{1}{1-a z^{-1}}$ if $\left|a z^{-1}\right|<1$. Hence its ROC is: $|z|>a$. The Z-transform of $x[n]$ is

$$
\begin{aligned}
X(z) & =-z \frac{\partial X_{1}}{\partial z} \\
& =\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}} \quad \text { ROC }=\{|z|>a\}
\end{aligned}
$$

- $x[n]=-n a^{n} u[-n-1]$ This problem is similar to the previous one. Define $x_{1}=$ $-a^{n} u[-n-1]$. Then $X_{1}(z)$ is computed as:

$$
X_{1}(z)=\sum_{n=-\infty}^{-1}-\left(a z^{-1}\right)^{n}=\sum_{n=1}^{\infty}-\left(z a^{-1}\right)^{n}
$$

This series converges to $\frac{1}{1-a z^{-1}}$ if $\left|z a^{-1}\right|<1$, hence ROC $=\{|z|<a\}$. The Z-transform of $x[n]$:

$$
\begin{aligned}
X(z) & =-z \frac{\partial X_{1}}{\partial z} \\
& =\frac{a z^{-1}}{\left(1-a z^{-1}\right)^{2}} \quad \text { ROC }=\{|z|<a\}
\end{aligned}
$$

- $x[n]=2^{n} u[n]-3^{n} u[-n-1]$

$$
x[n]=x_{1}[n]+x_{2}[n]
$$

From previous results we know that

$$
X_{1}(z)=\frac{2 z^{-1}}{\left(1-2 z^{-1}\right)^{2}} \quad \text { and } \quad X_{2}(z)=\frac{3 z^{-1}}{\left(1-3 z^{-1}\right)^{2}}
$$

where $\mathrm{ROC}_{1}=\{|z|>2\}$ and $\mathrm{ROC}_{2}=\{|z|<3\}$. So the Z-transform of $x[n]$ is $X(z)=X_{1}(z)+X_{(z)}$ with $\mathrm{ROC}=\mathrm{ROC}_{1} \cap \mathrm{ROC}_{2}=\{2<|z|<3\}$.

- $x[n]=e^{n^{4}}\left[\cos \left(\frac{\pi}{12} n\right)\right] u[n]-e^{n^{4}}\left[\cos \left(\frac{\pi}{12} n\right)\right] u[n-1]$

$$
\begin{aligned}
x[n] & =e^{n^{4}}\left[\cos \left(\frac{\pi}{12} n\right)\right](u[n]-u[n-1]) \\
& =e^{n^{4}}\left[\cos \left(\frac{\pi}{12} n\right)\right] \delta[n] \\
& =e^{0^{4}}\left[\cos \left(\frac{\pi}{12} 0\right)\right] \delta[n]=\delta[n] \\
\Rightarrow & X(z)=1 \Longrightarrow \mathrm{ROC}=\text { all } z
\end{aligned}
$$

Problem 4.

1.

$$
H(z)=\frac{Y(z)}{X(z)}=\frac{1-0.6 z^{-1}-2.35 z^{-2}-0.9 z^{-3}}{1-z^{-1}+0.49 z^{-2}-0.49 z^{-3}}
$$

Taking inverse z-transforms yields:

$$
\begin{align*}
x[n]-0.6 x[n-1]-2.35 x[n-2]- & 0.9 x[n-3] \\
& =y[n]-y[n-1]+0.49 y[n-2]-0.49 y[n-3] . \tag{2}
\end{align*}
$$

2. Poles of the system are: $z= \pm j 0.7,1$, zeros of the system are: $z=-0.5,-0.9,2$. Since the system is causal, therefore right sided, ROC would be the region outside the outermost pole. Thus ROC is $|z|>1$.
3. Since ROC does not contain the unit circle, the system is not stable. Also ROC contains complex numbers with absolute value greater that 1 . This implies that the impulse response must tend to zero as $n \rightarrow \infty$. For the last statement to be true, a little thought shows that ROC of the inverse system should be $0.9<|z|<2$ (due to stability). But this implies that the system is two-sided contradicting the fact that it is causal, so the statement is false.

Problem 5. (i). Find the system response $H(z)=Y(z) / X(z)$, and plot its pole-zero diagram.

$$
\begin{aligned}
& Y(z)=Y(z)\left(\frac{9}{2} z^{-1}+\frac{5}{2} z^{-2}\right)+X(z)\left(z^{-1}+1\right) \\
& Y(z)\left(1-\frac{9}{2} z^{-1}-\frac{5}{2} z^{-2}\right)=X(z)\left(z^{-1}+1\right) \\
& \Rightarrow Y(z) / X(z)=\frac{1+z^{-1}}{1-\frac{9}{2} z^{-1}-\frac{5}{2} z^{-2}} \\
& Y(z) / X(z)=\frac{1+z^{-1}}{\left(1+\frac{1}{2} z^{-1}\right)\left(1-5 z^{-1}\right)} \\
& Y(z) / X(z)=\frac{12 / 11}{\left(1-5 z^{-1}\right)}+\frac{-1 / 11}{\left(1+\frac{1}{2} z^{-1}\right)} \\
& Y(z) / X(z)=H_{1}(z)+H_{2}(z)
\end{aligned}
$$

There are two poles at $z=2$ and $z=-1 / 2$ and one zero at $z=-1$.
(ii). There are 3 different regions of convergence of $H(z), R O C(H(z))=R O C\left(H_{1}(z)\right) \cap$ $R O C\left(H_{2}(z)\right)$ when $|z|<1 / 2,1 / 2<|z|<5$ and $|z|>5$

- anticausal, unstable.

For the system to be anticausal the ROC should point inwards and for the system
to be unstable the ROC should not contain the unit circle. Then, ROC $=\{|z|<$ $1 / 2\}$. This means that the ROC of both H_{1} and H_{2} should point inwards(i.e., both h_{1} and h_{2} are anticausal).Therefore,

$$
h[n]=-\frac{12}{11}(5)^{n} u[-n-1]+\frac{1}{11}\left(-\frac{1}{2}\right)^{n} u[-n-1]
$$

- causal, unstable.

For the system to be causal the ROC should point outwards and for the system to be unstable the ROC should not contain the unit circle. Then the ROC $=\{|z|>$ $5\}$. This means that the ROC of both H_{1} and H_{2} should point outwards(i.e., both h_{1} and h_{2} are causal). Therefore,

$$
h[n]=\frac{12}{11}(5)^{n} u[n]-\frac{1}{11}\left(-\frac{1}{2}\right)^{n} u[n]
$$

- causal, stable.

The system can not be both causal and stable, because the region where the system is defined as causal does not include the unit circle.

- noncausal, stable.

The sytem is stable and noncausal when $R O C=\{1 / 2<|z|<5\}$. This means that h_{1} is anticausal h_{2} is causal. Therefore,

$$
h[n]=-\frac{12}{11}(5)^{n} u[-n-1]-\frac{1}{11}\left(-\frac{1}{2}\right)^{n} u[n] .
$$

