Problem 1. The output of the system with the input $\delta[n]$ is $\delta[n]$ and with $\delta[n+1]$ is $-\delta[n+1]$, which is not a shifted version of $\delta[n]$. Thus the system is not time invariant.
Problem 2. We know that the sequences $e^{j \omega n}$ are eigenfunctions of LTI systems, that is, $\mathcal{H}\left\{e^{j \omega n}\right\}=H(\omega) e^{j \omega n}$. Therefore, an LTI system cannot alter the frequency of its input. The system given in the problem outputs a sequence with frequency $\pm \frac{\pi}{2}$ when the input frequency is $\pm \frac{2 \pi}{5}$. Thus the system cannot be LTI.
Problem 3. 1. For $M=2, x[n]$ is plotted in Figure 1.

Figure 1:
2. We know that $H\left(e^{j \omega}\right)=\frac{\sin \left(\omega\left(M+\frac{1}{2}\right)\right)}{\sin (\omega / 2)}$ (cf. Prandoni, Vetterli, p. 74). Therefore,

$$
\begin{equation*}
X\left(e^{j \omega}\right)=H\left(e^{j \omega}\right) H\left(e^{j \omega}\right)=\left(\frac{\sin \left(\omega\left(M+\frac{1}{2}\right)\right)}{\sin (\omega / 2)}\right)^{2} \tag{1}
\end{equation*}
$$

$\left|X\left(e^{j \omega}\right)\right|$ is plotted in Figure 2.

Figure 2:
3. From equation (1), it is easy to see that the 'main lobe' of $X\left(e^{j \omega}\right)$ gets narrower as M grows.
4. $y[n]=x[n] * h[n]$ is plotted in Figure 3. Since $x[n]$ is piecewise linear and since convolution with $h[n]$ is equivalent to a discrete-time integration, $y[n]$ will be quadratice for general M.
5. $Y\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H\left(e^{j \omega}\right)=H\left(e^{j \omega}\right)^{3} .\left|Y\left(e^{j \omega}\right)\right|$ is plotted in Figure 4.

Problem 4. The response of the system can be found as

$$
\begin{aligned}
& \left(X(z)+Y(z) H_{2}(z)\right) H_{1}(z)=Y(z) \\
& \Rightarrow H(z)=\frac{Y(z)}{X(z)} \\
& =\frac{H_{1}(z)}{1+H_{1}(z) H_{2}(z)}
\end{aligned}
$$

Figure 3:

Figure 4:
where

$$
H_{1}(z)=1 \quad \text { and } \quad H_{2}(z)=\frac{-\frac{1}{2} z^{-1}}{1+\frac{1}{2} z^{-1}}
$$

The systems represented by $h_{1}[n]$ and $h_{2}[n]$ are stable since $\sum_{n=-\infty}^{\infty}\left|h_{1}[n]\right|=1$ and $\sum_{n=-\infty}^{\infty}\left|h_{2}[n]\right|=1$.

Then, the overall response is:

$$
\begin{aligned}
H(z) & =\frac{1}{1+\frac{-\frac{1}{2} z^{-1}}{1+\frac{1}{2} z^{-1}}} \\
& =1+\frac{1}{2} z^{-1} \\
& \Rightarrow h[n]=\delta[n]+\frac{1}{2} \delta[n-1] .
\end{aligned}
$$

The overall system is causal and stable. If we take $h_{2}[n]=\left(-\frac{1}{2}\right)^{n-1} u[n-1]$ which also represents a causal and a stable system with $\sum_{n=-\infty}^{\infty}\left|h_{2}[n]\right|=2$, the response $H_{2}(z)$ is

$$
H_{2}(z)=\frac{z^{-1}}{1+\frac{1}{2} z^{-1}} .
$$

Then the overall response of the system is:

$$
\begin{aligned}
H(z) & =\frac{1}{1+\frac{z^{-1}}{1+\frac{1}{2} z^{-1}}} \\
& =\frac{1+\frac{1}{2} z^{-1}}{1+\frac{3}{2} z^{-1}} \\
& =1-\frac{z^{-1}}{1+\frac{3}{2} z^{-1}} .
\end{aligned}
$$

There is a pole at $z=-3 / 2$ and we know that the system is causal. Then, the ROC is $|z|>3 / 2$ and the unit circle is not included in the unit circle so the system is not stable. The overall impulse response is $h[n]=\delta[n]+\left(-\frac{3}{2}\right)^{n-1} u[n-1]$.
Problem 5. $h_{1}[n]=\delta[n], h_{2}[n]=\left(-\frac{1}{2}\right)^{n} u[n-1]$. We have

$$
Y(z)=\left(X(z)-Y(z) H_{2}(z)\right) H_{1}(z)
$$

where $H_{1}(z)=\mathcal{Z}\left\{h_{1}\right\}=1$ and $H_{2}(z)=\mathcal{Z}\left\{h_{2}\right\}=\frac{-\frac{1}{2} z^{-1}}{1+\frac{1}{2} z^{-1}}$. Therefore the transfer function of the system is

$$
\frac{1}{1+H_{2}(z)}=1+\frac{1}{2} z^{-1} .
$$

This system is causal by construction. Also, the above transfer function has no poles (except at zero), therefore the system is stable.

The transfer function of the system, with $h_{2}[n]=\left(-\frac{1}{2}\right)^{n-1} u[n-1]$, is

$$
\frac{1}{1+H_{2}(z)}=\frac{1}{1+\frac{2 \cdot \frac{1}{2} z^{-1}}{1+\frac{1}{2} z^{-1}}}=\frac{1+\frac{1}{2} z^{-1}}{1+\frac{3}{2} z^{-1}}
$$

This time, there is a pole at $-\frac{3}{2}$. Since the system is causal, $\mathrm{ROC}=\{z:|z|>3 / 2\}$, which does not contain the unit circle. Therefore, the system is not stable.

Problem 6. The DTFT of the input signal $x[n]$ is given by

$$
X\left(e^{j \omega}\right)=\pi \sum_{l=-\infty}^{\infty} \delta(\omega-0.6 \pi-2 \pi l)+\delta(\omega+0.6 \pi-2 \pi l)+3 e^{-j 5 \omega}+4 \pi \sum_{m=-\infty}^{\infty} \delta(\omega-2 \pi m)
$$

Note that $X\left(e^{j \omega}\right)$ is always periodic with 2π. We can write $X\left(e^{j \omega}\right)$ for one period as:

$$
X\left(e^{j \omega}\right)=\pi(\delta(\omega-0.6 \pi)+\delta(\omega+0.6 \pi))+3 e^{-j 5 \omega}+4 \pi \delta(\omega) .
$$

We know that $W\left(e^{j \omega}\right)=X\left(e^{j \omega}\right) H_{1}\left(e^{j \omega}\right)$, then for one period $W\left(e^{j \omega}\right)$ is

$$
W\left(e^{j \omega}\right)= \begin{cases}3 e^{-j 5 \omega}+4 \pi \delta(\omega) & \text { if }|\omega| \leq 0.5 \pi \\ 0 & \text { else }\end{cases}
$$

The signal $w[n]$ can be computed as:

$$
\begin{aligned}
\frac{1}{2 \pi} \int W\left(e^{j \omega}\right) e^{j \omega n} d \omega & =\frac{1}{2 \pi} \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} 3 e^{-j 5 \omega}+4 \pi \delta(\omega) e^{j \omega n} d \omega \\
& =\frac{3}{2 \pi}\left(\frac{e^{j \frac{\pi}{2}(n-5)}-e^{-j \frac{\pi}{2}(n-5)}}{j(n-5)}\right)+2 \\
& =\frac{3 \sin \left(\frac{\pi}{2}(n-5)\right)}{\pi(n-5)}+2
\end{aligned}
$$

Then $y[n]=\omega[n]-\omega[n-1]$ is given by

$$
y[n]=\frac{3 \sin \left(\frac{\pi}{2}(n-5)\right)}{\pi(n-5)}-\frac{3 \sin \left(\frac{\pi}{2}(n-6)\right)}{\pi(n-6)} .
$$

