ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 9	Introduction to Communication Systems
Homework 5	October 16, 2008

PROBLEM 1. Consider the two probability distributions $P = \{0.4, 0.35, 0.15, 0.1\}$ and $Q = \{0.25, 0.35, 0.15, 0.25\}.$

- 1. Compute the two entropies H(P) and H(Q). Which one is larger?
- 2. Can you answer the above question without computing explicitly H(P) and H(Q)?

PROBLEM 2. Consider a random variable s which takes an infinite number of values whith corresponding probabilities $p_i = \frac{1}{2^i}, i \in \mathbb{N} = \{1, 2, 3, ...\}$.

- 1. Check that it is indeed a probability distribution.
- 2. What is the entropy of s?

Hint: If |r| < 1, $\sum_{i=0}^{\infty} (a+id)r^i = \frac{a}{1-r} + \frac{rd}{(1-r)^2}$.

PROBLEM 3. For each of the following three codes, say if it is uniquely decodable. If so, is it instantaneous?

	Code 1	Code 2	Code 3
s_1	0	0	10
s_2	010	10	00
s_3	01	110	11
s_4	10	111	110

PROBLEM 4. In this exercise, we will prove Gibbs inequality. Consider the two probability distributions $P = \{p_1, \ldots, p_n\}$ and $Q = \{q_1, \ldots, q_n\}$. Gibbs inequality states that

$$\sum_{i=1}^{n} p_i \log_2 \frac{1}{p_i} \le \sum_{i=1}^{n} p_i \log_2 \frac{1}{q_i},\tag{1}$$

with equality if and only if $p_i = q_i, \forall i$.

- 1. Show that $\ln(x) \le x 1$, if $x \ge 0$. Hint: Use the Taylor serie $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!}$
- 2. Set $x = \frac{q_i}{p_i}$ and prove Gibbs inequality.