ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. Consider the two probabilitiy distributions $P=\{0.4,0.35,0.15,0.1\}$ and $Q=\{0.25,0.35,0.15,0.25\}$.

1. Compute the two entropies $H(P)$ and $H(Q)$. Which one is larger?
2. Can you answer the above question without computing explicitly $H(P)$ and $H(Q)$?

Problem 2. Consider a random variable s which takes an infinite number of values whith corresponding probabilities $p_{i}=\frac{1}{2^{i}}, i \in \mathbb{N}=\{1,2,3, \ldots\}$.

1. Check that it is indeed a probability distribution.
2. What is the entropy of s ?

Hint: If $|r|<1, \sum_{i=0}^{\infty}(a+i d) r^{i}=\frac{a}{1-r}+\frac{r d}{(1-r)^{2}}$.
Problem 3. For each of the following three codes, say if it is uniquely decodable. If so, is it instantaneous?

	Code 1	Code 2	Code 3
s_{1}	0	0	10
s_{2}	010	10	00
s_{4}	01	110	11

Problem 4. In this exercise, we will prove Gibbs inequality. Consider the two probabilitiy distributions $P=\left\{p_{1}, \ldots, p_{n}\right\}$ and $Q=\left\{q_{1}, \ldots, q_{n}\right\}$. Gibbs inequality states that

$$
\begin{equation*}
\sum_{i=1}^{n} p_{i} \log _{2} \frac{1}{p_{i}} \leq \sum_{i=1}^{n} p_{i} \log _{2} \frac{1}{q_{i}} \tag{1}
\end{equation*}
$$

with equality if and only if $p_{i}=q_{i}, \forall i$.

1. Show that $\ln (x) \leq x-1$, if $x \geq 0$.

Hint: Use the Taylor serie $e^{x}=\sum_{n=0}^{\infty} \frac{x^{n}}{n!}$
2. Set $x=\frac{q_{i}}{p_{i}}$ and prove Gibbs inequality.

