ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 5
Signal Processing for Communications
Homework 4.
March 16, 2009

Problem 1.

1. Write a Matlab function that takes four arguments:

- frequency f,
- amplitude a,
- initial phase ϕ,
- length N,
and generates and plots $a \sin (2 \pi f n+\phi), n=0, \ldots, N-1$.

2. Plot the following sequences using your function for $n=0, \ldots, 300$:

- $f[n]=2 \sin \left(2 \pi \frac{n}{15}\right)$,
- $g[n]=\sin \left(2 \pi \frac{n}{25}+\frac{\pi}{3}\right)$,
- $f[n]+g[n]$,
- $f[n] g[n]$.

What are the periods of the above sequences? Use the Matlab function subplot to display all four sequences above in one window. Visually verify the periods of all four.

Problem 2.

1. Write a Matlab function that takes as input a sequence $x[n]$ of length N, and an integer $L \geq N$ and does the following:

- $\operatorname{pad} x[n]$ with $L-N$ zeros, i.e., compute $y=(x[0], \ldots, x[N-1], 0, \ldots, 0)$,
- compute the DFT of $y[n]$,
- return both $y[n]$ and its DFT.

2. Using your DFT function, compute and plot (both the phases and the magnitudes of) the DFTs of the following sequences:

- $x[n]=1, n=0, \ldots, N-1=9 . L=10,100,1000$.
- $x[n]=\sin \left(\frac{2 \pi}{8} n\right), n=0, \ldots, N-1=15 . L=16,32,64$.
- $x[n]=\sin \left(\frac{2 \pi}{8} n\right), n=0, \ldots, N-1=9 . L=10,20,30$.
- $x[n]=\sin \left(\frac{2 \pi}{5} n\right), n=0, \ldots, N-1=15 . L=16,32,64$.

What do you observe?
3. Write a Matlab function that takes as input a sequence $X[k]$ of length N and an integer $L \leq N$ and computes

$$
\begin{equation*}
\hat{x}[n]=\sum_{k=0}^{L} X[k] e^{j \frac{2 \pi}{N} k n} \tag{1}
\end{equation*}
$$

Suppose that $x \stackrel{\mathrm{DFT}}{\longleftrightarrow} X$. Then, the sequence $\hat{x}[n]$ is an approximation of $x[n]$ obtained by taking the first L frequencies contained in x and ignoring the rest. In particular, $\hat{x}=x$ if $L=N$.
4. Using function you wrote in part 3 , compute and plot (the magnitudes of) $\hat{x}[n]$ (given by (1)) for

- $X[k]=1, k=0, \ldots, 7, L=0, \ldots, 7$.
- $X[k]=e^{-\frac{(k-128)^{2}}{100}}, k=0, \ldots, 255 . L=0, \ldots, 255$.

What happens as L increases?

