ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 3
Signal Processing for Communications
Homework 3. Due: March 16, 2009
March 9, 2009

Problem 1. Let $x[n], n=0, \ldots, N-1$ be a complex signal. Prove the following properties of its DFT:

1. If $x[n] \longleftrightarrow X[k]$, then $x^{*}[-n \bmod N] \longleftrightarrow X^{*}[k]$.
2. If $x[n] \longleftrightarrow X[k]$, then $X[n] \longleftrightarrow N x[-k \bmod N]$.

Let $x[n]$ be a real sequence and let $x_{e}[n]$ and $x_{o}[n]$ denote its even and odd parts. That is,

$$
x_{e}[n]=\frac{1}{2}(x[n]+x[-n \quad \bmod N]) \quad x_{o}[n]=\frac{1}{2}(x[n]-x[-n \quad \bmod N]) .
$$

Prove the following:
3. $X[k]=X^{*}[-k \bmod N]$. What does this imply on $\Re\{X[k]\}$ and $\Im\{X[k]\}$?
4. $x_{e}[n] \longleftrightarrow \Re\{X[k]\}$ and $x_{o}[n] \longleftrightarrow j \Im\{X[k]\}$

Problem 2. Let $x_{1}[n]$ and $x_{2}[n]$ be length $-N$ sequences. Also let

$$
X_{1}[k] \circledast X_{2}[k]=\frac{1}{N} \sum_{l=1}^{N-1} X_{1}[l] X_{2}[k-l \bmod N]
$$

1. Show that $x_{1}[n] x_{2}[n] \longleftrightarrow X_{1}[k] \circledast X_{2}[k]$.
2. Show Parseval's relation: $\sum_{n=0}^{N-1}|x[n]|^{2}=\frac{1}{N} \sum_{k=0}^{N-1}|X[k]|^{2}$.

Problem 3. Let $\delta(t)$ denote the Dirac delta functional. Evaluate the following integrals:

1. $\int \delta(-t) f\left(t^{2}\right) d t$.
2. $\int \delta(2 t-5) f(3 t+2) d t$.
3. $\int \delta\left(-\frac{3 t}{4}+1\right) f\left(-\left(\frac{t}{2}\right)^{2}\right) d t$.
4. $\int \delta\left(\frac{2 t}{3}+4\right)(f(t))^{3} d t$.
5. $\int \delta(-4 t+5)\left(2 f(2 t)^{2}+f(2 t-1)+2\right) d t$.

Problem 4 (Exercise 3.3 in the book). Vector spaces and signals.

1. Show that the set of all ordered n-tuples $\left[a_{1}, a_{2}, \ldots, a_{n}\right]$ with the natural definition for the sum:

$$
\left[a_{1}, a_{2}, \ldots, a_{n}\right]+\left[b_{1}, b_{2}, \ldots, b_{n}\right]=\left[a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right]
$$

and the multiplication by a scalar:

$$
\alpha\left[a_{1}, a_{2}, \ldots, a_{n}\right]=\left[\alpha a_{1}, \alpha a_{2}, \ldots, \alpha a_{n}\right]
$$

form a vector space. Give its dimension and find a basis.
2. Show that the set of signals of the form $y(x)=a \cos (x)+b \sin (x)$ (for arbitrary a, b), with the usual addition and multiplication by a scalar, form a vector space. Give its dimension and find a basis.
3. Are the four diagonals of a cube orthogonal?
4. Express the discrete-time impulse $\delta[n]$ in terms of the discrete-time unit step $u[n]$ and conversely.
5. Show that any function $f(t)$ can be written as the sum of an odd and an even function, i.e., $f(t)=f_{o}(t)+f_{e}(t)$ where $f_{o}(-t)=-f_{o}(t)$ and $f_{e}(-t)=f_{e}(t)$.

Problem 5. Compute the DTFT of the following signals. Plot the magnitude of each DTFT.

1. $x[n]=n(u[n+3]-u[n-3])$
2. $x[n]=n \frac{1}{3}{ }^{|n|} u[-n-2]$
3. $x[n]=2^{n} \sin \left(\frac{\pi}{4} n\right) u[-n]$
4. $x[n]=\sin \left(\frac{\pi}{2} n+\frac{\pi}{6}\right)+\cos (n)$
5. $x[n]=\cos \left(\frac{\pi}{4} n\right) \sin \left(\frac{2 \pi}{5} n\right)$
