ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 4

Introduction to Communication Systems
Solutions to Homework 2
October 2, 2008

Problem 1. (a) The system is not causal, because the output has a non-zero value at $n=-1$, which means that we get an output even before we have applied the input.
(b) The system is not linear, because if we add $x_{1}+x_{2}$ we get x_{3}, but $y_{3} \neq y_{1}+y_{2}$.
(c) We cannot say whether the system is time-invariant or not from the three test signals.

Problem 2. From the definition of stability we know that if

$$
\sum_{m=-\infty}^{\infty}|h(m)|<\infty
$$

then the system is stable. So for the first case we know that the sum $\sum_{m=0}^{\infty} \frac{1}{m}$ diverges, hence the system is unstable. Consider the input $x[n]=u[n]$, where

$$
u[n]= \begin{cases}1, & n \geq 0 \\ 0, & \text { else }\end{cases}
$$

The output of the system is

$$
y[n]=\sum_{m=0}^{n-1} \frac{1}{n-m}
$$

Clearly as n increases we cannot bound the output $y[n]$ with a constant even though the input is always 1 .

The second system is stable because the sum

$$
\sum_{m=0}^{\infty} \frac{1}{m^{2}}=\frac{\pi^{2}}{6}
$$

converges to a constant. So for any input which is bounded by a constant over all the range of time, the output will also be bounded by a constant.

Problem 3. (a) $x(n)$
(b) $x(n+3)$ is $x(n)$ shifted by 3 to the left
(c) $x(2-n) \delta(n-1)=\left\{\begin{array}{ll}x(1) & \text { if } n=1 \\ 0 & \text { otherwise }\end{array}\right.$.
(d) $x(n-1)$ is $x(n)$ shifted by 1 to the right and the convolution with $\delta(3-n)$ shifts the signal by 3 to the right. So $x(n-1) \star \delta(3-n)$ is $x(n)$ shifted by 4 to the right.

Problem 4. (a) the output is given by $h(-1)=1, h(0)=3.25, h(1)=2.5, h(2)=2$, $h(3)=3.5, h(4)=1.25$
(b) the impulse response is $h(n)=h_{1}(n) \star h_{2}(n)$. It is the same if we swap H_{1} and H_{2} since the convolution is a commutative operator.
This system is also a filter, since we can see that:

- It is linear (we can easily prove that the cascade of two linear systems is also linear)
- It is time invariant (the composition of two invariant systems is also time invariant)
- The domain of the input and output signals is the same (in this case it is \mathbb{Z})

Problem 5. 1. (a) $x[n]=\operatorname{Im}\left(e^{j \omega n}\right)$
(b) $\operatorname{Im}(\gamma a+\beta b)=\operatorname{Im}(\gamma x+j \gamma y+\beta u+j \beta v)$ where $a=x+j y, b=u+j v$ and $\gamma, \beta \in \mathbb{R}$. Thus

$$
\begin{aligned}
\operatorname{Im}(\gamma a+\beta b) & =\gamma y+\beta v \\
& =\gamma \operatorname{Im}(a)+\beta \operatorname{Im}(b)
\end{aligned}
$$

(c) Let the input be $x[n]=e^{j \omega n}$. Convolution gives us

$$
\begin{aligned}
y[n] & =\sum_{m=-\infty}^{\infty} e^{j \omega(n-m)} h(m) \\
& =\sum_{m=0}^{\infty} e^{j \omega(n-m)} \alpha^{m} \\
& =e^{j \omega n} \sum_{m=0}^{\infty}\left(e^{-j \omega} \alpha\right)^{m} \\
& =e^{j \omega n} \frac{1}{1-e^{-j \omega} \alpha}
\end{aligned}
$$

Thus the amplitude of the output is given by

$$
\begin{aligned}
\left|\frac{1}{1-e^{-j \omega} \alpha}\right| & =\left|\frac{1}{1-\alpha \cos \omega+j \alpha \sin \omega}\right| \\
& =\left|\frac{1-\alpha \cos \omega-j \alpha \sin \omega}{(1-\alpha \cos \omega)^{2}+(\alpha \sin \omega)^{2}}\right| \\
& =\frac{1}{\sqrt{(1-\alpha \cos \omega)^{2}+(\alpha \sin \omega)^{2}}}
\end{aligned}
$$

Thus the output is given by

$$
y[n]=\frac{1}{\sqrt{(1-\alpha \cos \omega)^{2}+(\alpha \sin \omega)^{2}}} e^{j(\omega n+\phi)}
$$

where

$$
\tan \phi=\frac{-\alpha \sin \omega}{1-\alpha \cos \omega}
$$

(d) The input signal is $\operatorname{Im}\left(e^{j \omega n}\right)$. Thus the output is given by

$$
\begin{aligned}
y[n] & =\sum_{m=-\infty}^{\infty} \operatorname{Im}\left(e^{j \omega(n-m)}\right) h(m) \\
& =\operatorname{Im}\left(\sum_{m=-\infty}^{\infty} e^{j \omega(n-m)} h(m)\right) \\
& =\operatorname{Im}\left(\sum_{m=0}^{\infty} e^{j \omega(n-m)} h(m)\right)
\end{aligned}
$$

The second equality follows from the linearity of the $\operatorname{Im}(\cdot)$ function. Using the solution to the part above we get

$$
\begin{aligned}
y[n] & =\operatorname{Im}\left(\frac{1}{\sqrt{(1-\alpha \cos \omega)^{2}+(\alpha \sin \omega)^{2}}} e^{j(\omega n+\phi)}\right) \\
& =\frac{1}{\sqrt{(1-\alpha \cos \omega)^{2}+(\alpha \sin \omega)^{2}}} \sin (\omega n+\phi)
\end{aligned}
$$

where ϕ is given in the solution to the previous part.
2. The amplitude is given by

$$
\frac{1}{\sqrt{(1-\alpha \cos \omega)^{2}+(\alpha \sin \omega)^{2}}}
$$

For $\omega=0$ the amplitude is $\frac{1}{1-\alpha}$. For $\omega=\pi$ the amplitude is $\frac{1}{1+\alpha}$.
3. As $\alpha \rightarrow 1$ the amplitude at $\omega=0$ tends to infinity and amplitude at $\omega=\pi$ tends to $\frac{1}{2}$. This is a like a low-pass filter.

