ÉCOLE pOLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 8
Signal Processing for Communications
Solutions to Homework 1
April 5, 2009

Problem 1. A discrete signal $x[n]$ has period N if $x[n]=x[n+k N]$ for any integer k.

1. Suppose that $x[n]$ has period N. That is,

$$
e^{j \frac{n}{\pi}}=x[n]=x[n+k N]=e^{j \frac{n+k N}{\pi}} .
$$

Which implies $e^{j \frac{k N}{\pi}}=1$, which cannot be satisfied any integer N. Hence, $x[n]$ is aperiodic.
2. $x[n]=2+\sin (4 \pi n)+2 \cos (3 \pi n)$. Clearly the constant 2 has no effect on the periodicity of the signal. Since the rest of the signal is the sum of two periodic signals, $x[n]$ is also periodic. Note that $\sin (4 \pi n)$ has period 1 (i.e., it is constant), and $\cos (3 \pi n)$ has period 4 . Therefore $x[n]$ is of period 4 .
3. $x[n]=2 \sin (5 \pi n)+3 \sin (\sqrt{5} \pi n)$. Notice the that $x[n]$ is the sum of a periodic sequence $(2 \sin (5 \pi n))$ and an aperiodic sequence $(3 \sin (\sqrt{5} \pi n))$, therefore is aperiodic.
4. $x[n]=\cos (2 \pi n / 7) \sin (2 \pi n / 5)$. We have a product of two periodic signals, with periods 7 and 5 . Therefore the period of $x[n]$ is the least common multiple of the periods of the two factors. In this particular case, the period is 35 .

Problem 2. (i). For stability we need to check

$$
\sum_{n}|h[n]|<\infty
$$

and for causality we need to check

$$
h[n]=0 \text { for } n<0 .
$$

1. $\sum_{n}\left|-e^{|2 n|}\right|=2 \sum_{n=1}^{\infty} e^{2 n}+1=\infty$. (not stable, not causal).
2. $\sum_{n}\left|e^{2 n} u[-n+1]\right|=\sum_{n=-\infty}^{1} e^{2 n}=\sum_{n=-1}^{\infty} e^{-2 n}=e^{2}+\frac{1}{1-e^{-2}}<\infty$. (stable, not causal).
3. $\sum_{n}\left|(-1)^{n} u[3 n]\right|=\sum_{n=0}^{\infty} 1=\infty$. (not stable, causal).
4. $\sum_{n}\left|\frac{1}{3^{n}} u[n]+4^{n} u[-n-2]\right|=\sum_{n=0}^{\infty} \frac{1}{3^{n}}+\sum_{n=2}^{\infty} \frac{1}{4^{n}}<\infty$. (stable, not causal).
5. $\sum_{n}\left|\frac{1}{(n-1)^{2}} u[n-2]\right|=\sum_{n=2}^{\infty} \frac{1}{(n-1)^{2}}<\infty$. (stable, causal).
(ii). With the input $x[n]=u[n-2]-u[n-4]=\delta[n-2]+\delta[n-3]$, the output is

$$
\begin{aligned}
y[n] & =x[n] * h[n]=\sum_{m} x[m] h[n-m] \\
& =\sum_{m}(\delta[m-2]+\delta[m-3]) h[n-m] \\
& =h[n-2]+h[n-3] .
\end{aligned}
$$

For the stable systems above $(2,4,5)$ the output becomes;
2. $y[n]=e^{2 n-4} u[-n+3]+e^{2 n-6} u[-n+4]$.
4. $y[n]=\frac{1}{3^{n-2}} u[n-2]+4^{n-2} u[-n]+\frac{1}{3^{n-3}} u[n-3]+4^{n-3} u[-n+1]$.
5. $y[n]=\frac{1}{(n-3)^{2}} u[n-4]+\frac{1}{(n-4)^{2}} u[n-5]$.
(iii). We have $x[n]=\delta[n]+\delta[n-1]-\delta[n-2]-\delta[n-3]$. The input is the periodized version of $x[n]$. Then the overall response of the system is

$$
\begin{aligned}
y[n] & =w[n] * h[n]=\sum_{m} w[m] h[n-m] \\
& =\sum_{m} \sum_{k} x[m-4 k] h[n-m] \\
& =\sum_{m} \sum_{k} x[m-4 k] h[n-m] \\
& =\sum_{k} h[n-4 k]+h[n-1-4 k]-h[n-2-4 k]-h[n-3-4 k] .
\end{aligned}
$$

which is the periodized version of $h[n]+h[n-1]-h[n-2]-h[n-3]$. For the stable systems above
2.

$$
\begin{aligned}
y[n] & =\sum_{k} e^{2 n} u[-n+1]+e^{2 n-2} u[-n+2+4 k]-e^{2 n-4} u[-n+3+4 k] \\
& -e^{2 n-6} u[-n+4+4 k] .
\end{aligned}
$$

4.

$$
\begin{aligned}
y[n] & =\sum_{k} \frac{1}{3^{n}} u[n]+4^{n} u[-n-2]+\frac{1}{3^{n-1}} u[n-1]+4^{n-1} u[-n-1] \\
& -\frac{1}{3^{n-2}} u[n-2]-4^{n-2} u[-n]-\frac{1}{3^{n-3}} u[n-3]-4^{n-3} u[-n+1] .
\end{aligned}
$$

5. $y[n]=\sum_{k} \frac{1}{(n-1)^{2}} u[n-2]+\frac{1}{(n-2)^{2}} u[n-3]-\frac{1}{(n-3)^{2}} u[n-4]-\frac{1}{(n-4)^{2}} u[n-5]$.

Problem 3.1.

$$
\begin{aligned}
\sum_{n=1}^{\infty} \frac{1}{2^{n}}+j \frac{1}{3^{n}} & =\sum_{n=1}^{\infty} \frac{1}{2^{n}}+j \sum_{n=1}^{\infty} \frac{1}{3^{n}} \\
& =\frac{1 / 2}{1-1 / 2}+j \frac{1 / 3}{1-1 / 3}=1+\frac{j}{2}
\end{aligned}
$$

2. $\sum_{n=1}^{\infty}\left(\frac{j}{3}\right)^{n}=\frac{j / 3}{1-j / 3}=-\frac{1}{10}+j \frac{3}{10}$
3. Let $z=a+j b$. We have

$$
z^{-1}=z^{*}=\frac{a-j b}{a^{2}+b^{2}}=a-j b \Longrightarrow a^{2}+b^{2}=1 .
$$

I.e., the set satisfying $z^{-1}=z^{*}$ consists of all the complex numbers on the unit circle.
4. $z_{i}^{3}=e^{j 2 \pi} \Longrightarrow z_{i}=e^{j \frac{2 \pi}{3} i} \quad z \in\left\{1,-\frac{1}{2}+j \frac{\sqrt{3}}{2},-\frac{1}{2}-j \frac{\sqrt{3}}{2}\right\}$
5. $\prod_{n=1}^{\infty} e^{j \pi / 2^{n}}=e^{j \pi \sum_{n=1}^{\infty} 1 / 2^{n}}=e^{j \pi}=-1$

Problem 4. The fact that any vector \mathbf{z} can be represented in the basis $\left\{\mathbf{x}^{(k)}\right\}_{k=0, \ldots, N-1}$ follows by the definition of a basis. Now suppose that \mathbf{z} has two distinct representations $\left\{\alpha_{k}\right\}_{k=0, \ldots, N-1} \neq\left\{\beta_{k}\right\}_{k=0, \ldots, N-1}$. That is,

$$
\mathbf{z}=\sum_{k=0}^{N-1} \alpha_{k} \mathbf{x}^{(k)}, \quad \mathbf{z}=\sum_{k=0}^{N-1} \beta_{k} \mathbf{x}^{(k)}
$$

We can then write

$$
\mathbf{0}=\mathbf{z}-\mathbf{z}=\sum_{k=0}^{N-1}\left(\alpha_{k}-\beta_{k}\right) \mathbf{x}^{(k)} \neq 0
$$

a contradiction. Therefore, \mathbf{z} is uniquely represented in the basis $\left\{\mathbf{x}^{(k)}\right\}_{k=0, \ldots, N-1}$.
Problem 5.

$$
\begin{aligned}
X[k] & =\sum_{n=0}^{N-1} \cos ((2 \pi / N) L n+\phi) e^{-j 2 \pi k n / N} \\
& =\sum_{n=0}^{N-1} \frac{1}{2}\left(e^{j(2 \pi / N) L n+\phi}+e^{-j(2 \pi / N) L n-\phi}\right) e^{-j 2 \pi k n / N} \\
& =\sum_{n=0}^{N-1} \frac{1}{2}\left(e^{-j(2 \pi / N) n(k-L)} e^{j \phi}+e^{-j(2 \pi / N) n(k+L)} e^{-j \phi}\right) .
\end{aligned}
$$

Note that $\frac{1}{N} \sum_{n=0}^{N-1} e^{-j(2 \pi / N) n(k-L)}$ is non-zero and equal to 1 only when $k=L+m N$ where $m \in \mathbb{Z}$. Hence,

$$
\sum_{n=0}^{N-1} \frac{1}{2}\left(e^{-j(2 \pi / N) n(k-L)} e^{j \phi}+e^{-j(2 \pi / N) n(k+L)} e^{-j \phi}\right)=\frac{N}{2}\left(\delta[k-L] e^{j \phi}+\delta[k+L] e^{-j \phi}\right)
$$

Problem 6.

$$
\begin{gathered}
X[k]=\sum_{n=0}^{3} x[n] e^{-2 \pi k n / 4}=a+(-j)^{k} b+(-1)^{k} c+j^{k} d \\
X[0]=a+b+c+d \\
X[1]=a-j b-c+j d \\
X[2]=a-b+c-d \\
X[3]=a+j b-c-j d
\end{gathered}
$$

For DFT to be real we need $X[k]=X^{*}[k]$. For this to hold we need $\{\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}\}$ to be real and also $b=d$.

