ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 8	Signal Processing for Communications
Solutions to Homework 1	April 5, 2009

PROBLEM 1. A discrete signal x[n] has period N if x[n] = x[n+kN] for any integer k.

1. Suppose that x[n] has period N. That is,

$$e^{j\frac{n}{\pi}} = x[n] = x[n+kN] = e^{j\frac{n+kN}{\pi}}.$$

Which implies $e^{j\frac{kN}{\pi}} = 1$, which cannot be satisfied any integer N. Hence, x[n] is aperiodic.

- 2. $x[n] = 2 + \sin(4\pi n) + 2\cos(3\pi n)$. Clearly the constant 2 has no effect on the periodicity of the signal. Since the rest of the signal is the sum of two periodic signals, x[n] is also periodic. Note that $\sin(4\pi n)$ has period 1 (i.e., it is constant), and $\cos(3\pi n)$ has period 4. Therefore x[n] is of period 4.
- 3. $x[n] = 2\sin(5\pi n) + 3\sin(\sqrt{5\pi n})$. Notice the that x[n] is the sum of a periodic sequence $(2\sin(5\pi n))$ and an aperiodic sequence $(3\sin(\sqrt{5\pi n}))$, therefore is aperiodic.
- 4. $x[n] = \cos(2\pi n/7) \sin(2\pi n/5)$. We have a product of two periodic signals, with periods 7 and 5. Therefore the period of x[n] is the least common multiple of the periods of the two factors. In this particular case, the period is 35.

Problem 2. (i). For stability we need to check

$$\sum_{n} |h[n]| < \infty$$

and for causality we need to check

$$h[n] = 0 \text{ for } n < 0.$$

- 1. $\sum_{n} |-e^{|2n|}| = 2 \sum_{n=1}^{\infty} e^{2n} + 1 = \infty$. (not stable, not causal).
- 2. $\sum_{n} |e^{2n}u[-n+1]| = \sum_{n=-\infty}^{1} e^{2n} = \sum_{n=-1}^{\infty} e^{-2n} = e^2 + \frac{1}{1-e^{-2}} < \infty$. (stable, not causal).
- 3. $\sum_{n} |(-1)^{n} u[3n]| = \sum_{n=0}^{\infty} 1 = \infty$. (not stable, causal).
- 4. $\sum_{n} \left| \frac{1}{3^{n}} u[n] + 4^{n} u[-n-2] \right| = \sum_{n=0}^{\infty} \frac{1}{3^{n}} + \sum_{n=2}^{\infty} \frac{1}{4^{n}} < \infty.$ (stable, not causal). 5. $\sum_{n} \left| \frac{1}{(n-1)^{2}} u[n-2] \right| = \sum_{n=2}^{\infty} \frac{1}{(n-1)^{2}} < \infty.$ (stable, causal).

(ii). With the input $x[n] = u[n-2] - u[n-4] = \delta[n-2] + \delta[n-3]$, the output is

$$y[n] = x[n] * h[n] = \sum_{m} x[m]h[n-m]$$

= $\sum_{m} (\delta[m-2] + \delta[m-3])h[n-m]$
= $h[n-2] + h[n-3].$

For the stable systems above (2,4,5) the output becomes;

2.
$$y[n] = e^{2n-4}u[-n+3] + e^{2n-6}u[-n+4].$$

4. $y[n] = \frac{1}{3^{n-2}}u[n-2] + 4^{n-2}u[-n] + \frac{1}{3^{n-3}}u[n-3] + 4^{n-3}u[-n+1].$
5. $y[n] = \frac{1}{(n-3)^2}u[n-4] + \frac{1}{(n-4)^2}u[n-5].$

(iii). We have $x[n] = \delta[n] + \delta[n-1] - \delta[n-2] - \delta[n-3]$. The input is the periodized version of x[n]. Then the overall response of the system is

$$y[n] = w[n] * h[n] = \sum_{m} w[m]h[n - m]$$

= $\sum_{m} \sum_{k} x[m - 4k]h[n - m]$
= $\sum_{m} \sum_{k} x[m - 4k]h[n - m]$
= $\sum_{k} h[n - 4k] + h[n - 1 - 4k] - h[n - 2 - 4k] - h[n - 3 - 4k].$

which is the periodized version of h[n] + h[n-1] - h[n-2] - h[n-3]. For the stable systems above

2.

$$y[n] = \sum_{k} e^{2n} u[-n+1] + e^{2n-2} u[-n+2+4k] - e^{2n-4} u[-n+3+4k] - e^{2n-6} u[-n+4+4k].$$

4.

$$y[n] = \sum_{k} \frac{1}{3^{n}} u[n] + 4^{n} u[-n-2] + \frac{1}{3^{n-1}} u[n-1] + 4^{n-1} u[-n-1] \\ - \frac{1}{3^{n-2}} u[n-2] - 4^{n-2} u[-n] - \frac{1}{3^{n-3}} u[n-3] - 4^{n-3} u[-n+1].$$
$$y[n] = \sum_{k} \frac{1}{(n-1)^{2}} u[n-2] + \frac{1}{(n-2)^{2}} u[n-3] - \frac{1}{(n-3)^{2}} u[n-4] - \frac{1}{(n-4)^{2}} u[n-5]$$

PROBLEM 3. 1.

5.

$$\begin{split} \sum_{n=1}^{\infty} \frac{1}{2^n} + j \frac{1}{3^n} &= \sum_{n=1}^{\infty} \frac{1}{2^n} + j \sum_{n=1}^{\infty} \frac{1}{3^n} \\ &= \frac{1/2}{1 - 1/2} + j \frac{1/3}{1 - 1/3} = 1 + \frac{j}{2} \end{split}$$

- 2. $\sum_{n=1}^{\infty} (\frac{j}{3})^n = \frac{j/3}{1-j/3} = -\frac{1}{10} + j\frac{3}{10}$
- 3. Let z = a + jb. We have

$$z^{-1} = z^* = \frac{a - jb}{a^2 + b^2} = a - jb \Longrightarrow a^2 + b^2 = 1.$$

I.e., the set satisfying $z^{-1} = z^*$ consists of all the complex numbers on the unit circle. 4. $z_i^3 = e^{j2\pi} \Longrightarrow z_i = e^{j\frac{2\pi}{3}i}$ $z \in \{1, -\frac{1}{2} + j\frac{\sqrt{3}}{2}, -\frac{1}{2} - j\frac{\sqrt{3}}{2}\}$ 5. $\prod_{n=1}^{\infty} e^{j\pi/2^n} = e^{j\pi\sum_{n=1}^{\infty} 1/2^n} = e^{j\pi} = -1$

PROBLEM 4. The fact that any vector \mathbf{z} can be represented in the basis $\{\mathbf{x}^{(k)}\}_{k=0,\dots,N-1}$ follows by the definition of a basis. Now suppose that \mathbf{z} has two distinct representations $\{\alpha_k\}_{k=0,\dots,N-1} \neq \{\beta_k\}_{k=0,\dots,N-1}$. That is,

$$\mathbf{z} = \sum_{k=0}^{N-1} \alpha_k \mathbf{x}^{(k)}, \qquad \mathbf{z} = \sum_{k=0}^{N-1} \beta_k \mathbf{x}^{(k)}.$$

We can then write

$$\mathbf{0} = \mathbf{z} - \mathbf{z} = \sum_{k=0}^{N-1} (\alpha_k - \beta_k) \mathbf{x}^{(k)} \neq 0,$$

a contradiction. Therefore, **z** is uniquely represented in the basis $\{\mathbf{x}^{(k)}\}_{k=0,\dots,N-1}$.

Problem 5.

$$X[k] = \sum_{n=0}^{N-1} \cos\left((2\pi/N)Ln + \phi\right) e^{-j2\pi kn/N}$$
$$= \sum_{n=0}^{N-1} \frac{1}{2} \left(e^{j(2\pi/N)Ln + \phi} + e^{-j(2\pi/N)Ln - \phi}\right) e^{-j2\pi kn/N}$$
$$= \sum_{n=0}^{N-1} \frac{1}{2} \left(e^{-j(2\pi/N)n(k-L)}e^{j\phi} + e^{-j(2\pi/N)n(k+L)}e^{-j\phi}\right).$$

Note that $\frac{1}{N} \sum_{n=0}^{N-1} e^{-j(2\pi/N)n(k-L)}$ is non-zero and equal to 1 only when k = L + mN where $m \in \mathbb{Z}$. Hence,

$$\sum_{n=0}^{N-1} \frac{1}{2} \left(e^{-j(2\pi/N)n(k-L)} e^{j\phi} + e^{-j(2\pi/N)n(k+L)} e^{-j\phi} \right) = \frac{N}{2} \left(\delta[k-L] e^{j\phi} + \delta[k+L] e^{-j\phi} \right)$$

Problem 6.

$$X[k] = \sum_{n=0}^{3} x[n]e^{-2\pi kn/4} = a + (-j)^{k}b + (-1)^{k}c + j^{k}d.$$

$$X[0] = a + b + c + d$$

$$X[1] = a - jb - c + jd$$

$$X[2] = a - b + c - d$$

$$X[3] = a + jb - c - jd$$

For DFT to be real we need $X[k] = X^*[k]$. For this to hold we need {a,b,c,d} to be real and also b = d.