ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Solutions to Homework 1
Problem 1. The plots of various signals are shown in Figures $1,2,3,4,5,6,7$:

Figure 1: Triangle (t)

Figure 2: $\operatorname{Step}(t)$

Figure 3: Pulse(t)

Problem 2. 1. Consider the signal, $p(t)=5 \sin \left(10 t+\frac{\pi}{2}\right)+2.5 \cos (5 t)$. From the definition of periodicity, $p\left(t+T_{p}\right)=p(t)$, we have that $10 T_{p}$ and $5 T_{p}$ should both be integer multiples of 2π. Clearly the smallest such T_{p} is given by $\frac{2 \pi}{g}=\frac{2 \pi}{5}$, where g is the greatest common divisor of 5,10 . This is true because if we take any $d>g$ and suppose the period is $\frac{2 \pi}{d}$, then it must be that both $\frac{10}{d}$ and $\frac{5}{d}$ are integers, which would contradict the fact that g is the g.c.d.

Figure 4: $\operatorname{Ramp}(t)$

Figure 5: $\operatorname{Diff}(t)$

Figure 6: $\operatorname{Sum}(t)$

Figure 7: $\operatorname{Sinc}(t)$
2. Again from the definition of the periodicity, we must have that $N \bar{f} T_{p}$ and $M \bar{f} T_{p}$ are both integers. The period must be given by $\frac{1}{\text { g.c.d }(N, M) f}=\frac{1}{f}$.
3. Since we want $f_{0} T_{p}$ and $f_{1} T_{p}$ to be both integers, necessarily we must have that $\frac{f_{0}}{f_{1}}$ is a rational number. Thus for f_{0}, f_{1} such that $\frac{f_{0}}{f_{1}}$ is irrational, the signal is not periodic.

Problem 3. 1. $\log _{2} 26$ bits to store each letter.
2. $170000 \log _{2} 26=799075$ bits to store the Hamlet.
3. We need $\log _{2}\left[\binom{500000}{4000}\right]$ bits to specify which 4000 words the Hamlet has and further $33000 \log _{2} 4000$ to specify the entire Hamlet. Thus total bits required are 428474. Thus we can save space by looking at words rather than each character.

Problem 4. Let us denote the output of a linear system S by $S[x(t)]$.

1. The system is not linear. Indeed let $y_{1}(t)=S_{1}\left[x_{1}(t)\right] S_{2}\left[x_{1}(t)\right]$ and let $y_{2}(t)=$ $S_{1}\left[x_{2}(t)\right] S_{2}\left[x_{2}(t)\right]$. Consider the output, $y_{12}(t)$ of the system for the input $x_{1}(t)+x_{2}(t)$

$$
\begin{aligned}
y_{12}(t) & =S_{1}\left[x_{1}(t)+x_{2}(t)\right] S_{2}\left[x_{1}(t)+x_{2}(t)\right] \\
& =\left(S_{1}\left[x_{1}(t)\right]+S_{1}\left[x_{2}(t)\right]\right)\left(S_{2}\left[x_{1}(t)\right]+S_{2}\left[x_{2}(t)\right]\right) \\
& =S_{1}\left[x_{1}(t)\right] S_{2}\left[x_{1}(t)\right]+S_{1}\left[x_{1}(t)\right] S_{2}\left[x_{2}(t)\right]+S_{1}\left[x_{2}(t)\right] S_{2}\left[x_{1}(t)\right]+S_{1}\left[x_{2}(t)\right] S_{2}\left[x_{2}(t)\right]
\end{aligned}
$$

Clearly

$$
y_{1}(t)+y_{2}(t)=S_{1}\left[x_{1}(t)\right] S_{2}\left[x_{1}(t)\right]+S_{1}\left[x_{2}(t)\right] S_{2}\left[x_{2}(t)\right] \neq y_{12}(t)
$$

implying that the system is not linear.
2. The system is linear. Indeed let $y_{1}(t)=\alpha\left(S_{1}\left[x_{1}(t)\right]+S_{2}\left[x_{1}(t)\right]\right)$ and let $y_{2}(t)=$ $\alpha\left(S_{1}\left[x_{2}(t)\right]+S_{2}\left[x_{2}(t)\right]\right)$. Consider the output $y_{12}(t)$ for the input $\beta x_{1}(t)+\gamma x_{2}(t)$. We have

$$
\begin{aligned}
y_{12}(t) & =\alpha\left(S_{1}\left[\beta x_{1}(t)+\gamma x_{2}(t)\right]+S_{2}\left[\beta x_{1}(t)+\gamma x_{2}(t)\right]\right) \\
& =\alpha\left(\beta S_{1}\left[x_{1}(t)\right]+\gamma S_{1}\left[x_{2}(t)\right]+\beta S_{2}\left[x_{1}(t)\right]+\gamma S_{2}\left[x_{2}(t)\right]\right) \\
& =\beta\left(\alpha\left(S_{1}\left[x_{1}(t)\right]+S_{2}\left[x_{1}(t)\right]\right)\right)+\gamma\left(\alpha\left(S_{1}\left[x_{2}(t)\right]+S_{2}\left[x_{2}(t)\right]\right)\right) \\
& =\beta y_{1}(t)+\gamma y_{2}(t)
\end{aligned}
$$

where the second equality follows from the linearity of the systems S_{1}, S_{2}.

