ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 20
Introduction to Communication Systems
Solutions to Homework 13
December 24, 2008

Problem 1. (a) $5^{0} \equiv 1(\bmod 7), 5^{1} \equiv 5(\bmod 7), 5^{2} \equiv 4(\bmod 7), 5^{3} \equiv 6(\bmod 7)$, $5^{4} \equiv 2(\bmod 7), 5^{5} \equiv 3(\bmod 7)$. Since $\phi(7)=6$ and $\operatorname{gcd}(5,7)=1$, from the Euler's theorem we have,

$$
5^{6} \equiv(\bmod 7)
$$

(b) One can see from the previous part that $5^{k} \not \equiv 1(\bmod 7)$ for $0<k<6$. Since $\phi(7)=6$, and $\operatorname{gcd}\left(5^{k}, 7\right)=1$ for any k we have from the Euler's theorem,

$$
5^{6 k}=\left(5^{k}\right)^{6} \equiv 1 \quad(\bmod 7)
$$

(c) Clearly,

$$
\begin{aligned}
\left(5^{k}-1\right)\left(1+5^{k}+5^{2 k}+5^{3 k}+5^{4 k}+5^{5 k}\right) & =5^{k}\left(1+5^{k}+5^{2 k}+5^{3 k}+5^{4 k}+5^{5 k}\right) \\
& -\left(1+5^{k}+5^{2 k}+5^{3 k}+5^{4 k}+5^{5 k}\right) \\
& =5^{6 k}-1=0
\end{aligned}
$$

The last equality follows from the previous part. This implies that

$$
\left(5^{k}-1\right) \sum_{i=0}^{5} 5^{k i}=0
$$

Again, from the previous part we know that $5^{k} \not \equiv 1(\bmod 7)$ for $0<k<6$, this implies that

$$
\sum_{i=0}^{5} 5^{k i}=0
$$

for $0<k<6$. For $k=0$ we have

$$
\sum_{i=0}^{5} 5^{k i}=1+1+1+1+1+1 \equiv 6 \quad(\bmod 7)
$$

(e) From the definition of Fourier transform we have,

$$
\hat{u}_{i}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{i l}
$$

Performing all computations modulo 7, we have

$$
\begin{aligned}
& \hat{u}_{0}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{0 l}=\sum_{l=0,1, \ldots, 5} u_{l}=0 \\
& \hat{u}_{1}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{1 l}=3 \\
& \hat{u}_{2}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{2 l}=6 \\
& \hat{u}_{3}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{3 l}=4 \\
& \hat{u}_{4}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{4 l}=2 \\
& \hat{u}_{5}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{5 l}=5
\end{aligned}
$$

(f) From the definition of the inverse Fourier transform we have

$$
u_{j}=6 \sum_{i=0,1, \ldots, 5} \hat{u}_{i} 5^{i j}
$$

Since \hat{u}_{i} is the $i^{\text {th }}$ component of the Fourier transform of u, we use the its definition to get

$$
u_{j}=6 \sum_{i=0,1, \ldots, 5} \sum_{l=0,1, \ldots, 5} u_{l} 3^{i l} 5^{i j}
$$

Since $5 \cdot 3 \equiv 1(\bmod 7), 3$ is the inverse of 5 , i.e. $3=5^{-1}$ modulo 7 . Thus we have

$$
\begin{aligned}
u_{j} & =6 \sum_{i=0,1, \ldots, 5} \sum_{l=0,1, \ldots, 5} u_{l} 5^{-i l} 5^{i j}=6 \sum_{i=0,1, \ldots, 5} \sum_{l=0,1, \ldots, 5} u_{l} 5^{i(j-l)} \\
& =\sum_{l=0,1, \ldots, 5} u_{l} 6 \sum_{i=0,1, \ldots, 5}\left(5^{(j-l)}\right)^{i}
\end{aligned}
$$

where in the last equality we exchanged the order of two summations.
Now using the results of part (c) we know that $j=l$ implies $\sum_{i=0,1, \ldots, 5}\left(5^{(j-l)}\right)^{i}=6$ $(\bmod 7)$ and $6 \cdot 6=36 \equiv 1(\bmod 7)$. Also for $j \neq l$ we have

$$
\sum_{i=0,1, \ldots, 5}\left(5^{(j-l)}\right)^{i}=\sum_{i=0,1, \ldots, 5}\left(5^{k i}\right)
$$

where $0<|k|<6$. Thus if $k>0$ then from the results of part (c) we have that

$$
\sum_{i=0,1, \ldots, 5}\left(5^{k i}\right)=0
$$

if $k<0$, then we know that $5^{-1}=3$, thus

$$
\sum_{i=0,1, \ldots, 5}\left(5^{k i}\right)=\sum_{i=0,1, \ldots, 5}\left(3^{-k i}\right)
$$

Here $0<-k<6$. One can easily verify that the results of part (c) are valid if we replace 5 by 3 , thus we get

$$
\sum_{i=0,1, \ldots, 5}\left(3^{-k i}\right)=0
$$

and hence

$$
u_{j}=\sum_{l=0,1, \ldots, 5} u_{l} 6 \sum_{i=0,1, \ldots, 5}\left(5^{(j-l)}\right)^{i}=u_{j}
$$

(g) (i) Cyclic convolution y, of two vectors u, v is given by,

$$
y[n]=\sum_{m=0,1, \ldots, 5} u[m] v[n-m \quad(\bmod 6)]
$$

Note that here the signals are periodic with period 6. Thus we have

$$
\begin{align*}
y[0] & =\sum_{m=0,1, \ldots, 5} u[m] v[-m \quad(\bmod 6)] \\
& =u[0] v[0]+u[1] v[5]+u[2] v[4]+u[3] v[3]+u[4] v[2]+u[5] v[1]=5 \\
y[1] & =\sum_{m=0,1, \ldots, 5} u[m] v[1-m \quad(\bmod 6)] \\
& =u[0] v[1]+u[1] v[0]+u[2] v[5]+u[3] v[4]+u[4] v[3]+u[5] v[2]=2 \\
y[2] & =\sum_{m=0,1, \ldots, 5} u[m] v[2-m \quad(\bmod 6)] \\
& =u[0] v[2]+u[1] v[1]+u[2] v[0]+u[3] v[5]+u[4] v[4]+u[5] v[3]=5 \\
y[3] & =\sum_{m=0,1, \ldots, 5} u[m] v[3-m \quad(\bmod 6)] \\
& =u[0] v[3]+u[1] v[2]+u[2] v[1]+u[3] v[0]+u[4] v[5]+u[5] v[4]=2 \\
y[4] & =\sum_{m=0,1, \ldots, 5} u[m] v[4-m \quad(\bmod 6)] \\
& =u[0] v[4]+u[1] v[3]+u[2] v[2]+u[3] v[1]+u[4] v[0]+u[5] v[5]=5 \\
y[5] & =\sum_{m=0,1, \ldots, 5} u[m] v[5-m \quad(\bmod 6)] \\
& =u[0] v[5]+u[1] v[4]+u[2] v[3]+u[3] v[2]+u[4] v[1]+u[5] v[0]=2 \tag{1}
\end{align*}
$$

(ii) Fourier transform of u is given by

$$
\begin{aligned}
& \hat{u}_{0}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{0 l}=\sum_{l=0,1, \ldots, 5} u_{l}=0 \\
& \hat{u}_{1}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{1 l}=3 \\
& \hat{u}_{2}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{2 l}=6 \\
& \hat{u}_{3}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{3 l}=4 \\
& \hat{u}_{4}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{4 l}=2 \\
& \hat{u}_{5}=\sum_{l=0,1, \ldots, 5} u_{l} 3^{5 l}=5
\end{aligned}
$$

The Fourier transform of v is given by

$$
\begin{aligned}
& \hat{v}_{0}=\sum_{l=0,1, \ldots, 5} v_{l} 3^{0 l}=\sum_{l=0,1, \ldots, 5} v_{l}=2 \\
& \hat{v}_{1}=\sum_{l=0,1, \ldots, 5} v_{l} 3^{1 l}=0 \\
& \hat{v}_{2}=\sum_{l=0,1, \ldots, 5} v_{l} 3^{2 l}=0 \\
& \hat{v}_{3}=\sum_{l=0,1, \ldots, 5} v_{l} 3^{3 l}=4 \\
& \hat{v}_{4}=\sum_{l=0,1, \ldots, 5} v_{l} 3^{4 l}=0 \\
& \hat{v}_{5}=\sum_{l=0,1, \ldots, 5} v_{l} 3^{5 l}=0
\end{aligned}
$$

Multiplying \hat{u} and \hat{v} component wise we get

$$
\begin{aligned}
& \hat{w}_{0}=\hat{u}_{0} \hat{v}_{0}=0 \\
& \hat{w}_{1}=\hat{u}_{1} \hat{v}_{1}=0 \\
& \hat{w}_{2}=\hat{u}_{2} \hat{v}_{2}=0 \\
& \hat{w}_{3}=\hat{u}_{3} \hat{v}_{3}=16=2 \quad(\bmod 7) \\
& \hat{w}_{4}=\hat{u}_{4} \hat{v}_{4}=0 \\
& \hat{w}_{5}=\hat{u}_{5} \hat{v}_{5}=0
\end{aligned}
$$

We take the inverse Fourier transform of $\hat{w}=(000200)$ is given by $w=(525252)$ which matches the original calculation in equation (1).
(h) (a) For the canonical definition of RS codes, we consider n non-zero distinct elements $\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$ of the field F_{q} where $n<q$. Then we consider all polynomials $A(x)$ of degree at most $k-1$ and then evaluate $\left(A\left(a_{0}\right), A\left(a_{1}\right), \ldots, A\left(a_{n-1}\right)\right)$ to form the code of length n and dimension k. Here $n=6$ and $q=7$. Thus clearly
the only 6 non-zero distinct elements are $1,2,3,4,5,6$. Also since $k=2$ we have that $A(x)=c_{1}+c_{2} x$ where both $c_{1}, c_{2} \in F_{7}$. Thus there are 49 codewords.
Now we know from the previous part (a) that 3 is a generator of the field F_{7}, i.e. 3^{i} for $0 \leq i \leq 5$ covers all the non-zero elements of the field F_{7}. Indeed this is easily checked: $3^{0} \equiv 1(\bmod 7), 3^{1} \equiv 3(\bmod 7), 3^{2} \equiv 2(\bmod 7), 3^{3} \equiv 6$ $(\bmod 7), 3^{4} \equiv 4(\bmod 7), 3^{5} \equiv 5(\bmod 7)$.
Now consider the Fourier transform of the set $\hat{c}=\left(c_{1}, c_{2}, 0,0,0\right)$ for $c_{1}, c_{2} \in F_{7}$. We have

$$
\begin{aligned}
\hat{\hat{c}}_{i} & =\sum_{j=0,1, \ldots, 5} \hat{c}_{j} 3^{i j} \\
& =c_{1}+c_{2} 3^{i}
\end{aligned}
$$

The equivalence of the definitions is now got as follows: let the 6 distinct, nonzero elements required for the canonical definition of RS codes be given by

$$
a_{0}=3^{0} \equiv 1 ; a_{1}=3^{1} \equiv 3 ; a_{2}=3^{2} \equiv 2 ; a_{3}=3^{3} \equiv 6 ; a_{4}=3^{4} \equiv 4 ; a_{5}=3^{5} \equiv 5
$$

Thus according to the canonical definition of RS codes, a codeword is given by

$$
y_{i}=c_{1}+c_{2} 3^{i}
$$

which is exactly the Fourier transform of the set $\hat{c}=\left(c_{1}, c_{2}, 0,0,0,0\right)$.
(b) Code is generated by the generator matrix G as follows: consider the vector $u=\left(u_{1}, \ldots, u_{k}\right)$, where k is the dimension of the code and each $u_{i} \in F_{q}$. Then a codeword x is given by $u \cdot G$. Here $k=2, q=7$. Thus we have $u=\left(u_{1}, u_{2}\right)$ and the codeword x is given by

$$
\begin{equation*}
x_{i}=u_{1} g_{1 i}+u_{2} g_{2 i} \quad(\bmod 7) \tag{2}
\end{equation*}
$$

where $\left(g_{1 i}, g_{2 i}\right)$ is the $i^{\text {th }}$ column of the matrix G.
From the Fourier transform definition of the RS code, we see that

$$
x_{i}=u_{1}+u_{2} 3^{i}
$$

where $u_{1}, u_{2} \in F_{7}$. Thus together with equation (2), this implies that the $i^{\text {th }}$ column of G is given by $\left(1,3^{i}\right)$. One easily verifies that G is thus given by

$$
G=\left(\begin{array}{llllll}
1 & 1 & 1 & 1 & 1 & 1 \\
1 & 3 & 2 & 6 & 4 & 5
\end{array}\right)
$$

(c) The codeword is given by

$$
x_{i}=1+4 \cdot 3^{i} \quad(\bmod 7)
$$

Thus

$$
x_{0}=5 ; x_{1}=6 ; x_{2}=2 ; x_{3}=4 ; x_{4}=3 ; x_{5}=0
$$

Thus the transmitted codeword is given by ($5,6,2,4,3,0$).
(d) Let us denote the codeword by $x=\left(x_{0}, x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)$. Using the generator matrix definition of the code we get,

$$
\begin{align*}
& c_{1}+3 c_{2}=4 \tag{3}\\
& c_{1}+6 c_{2}=6 \tag{4}\\
& c_{1}+4 c_{2}=0 \tag{5}
\end{align*}
$$

Solving equation (1), (2) we get $c_{1}=2, c_{2}=3$. Thus the transmitted codeword is given by (541603).

Problem 2 (Hamming Bound). (i) If we take a codeword c and flip its values at some j positions, we get a word which is at a Hamming distance j from the codeword c. There are $\binom{n}{j}$ ways of selecting j positions amongst n positions. Thus the number of words at a Hamming distance j from the codeword c is given by $\binom{n}{j}$. Thus the number of words contained in a sphere of radius i around c is given by

$$
\sum_{j=0}^{i}\binom{n}{j}
$$

(ii) If suppose the spheres of radius $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ around two codewords x, y overlap, then there exists a word z such that $d(x, z) \leq\left\lfloor\frac{d-1}{2}\right\rfloor$ and $d(y, z) \leq\left\lfloor\frac{d-1}{2}\right\rfloor$. Since Hamming distance is a true distance, from the triangle inequality for distances we have

$$
d(x, y) \leq d(x, z)+d(y, z) \leq\left\lfloor\frac{d-1}{2}\right\rfloor+\left\lfloor\frac{d-1}{2}\right\rfloor \leq d-1
$$

But this is a contradiction, since the minimum distance between any two codewords is d.
(iii) \& (iv) Consider sphere of radius $t=\left\lfloor\frac{d-1}{2}\right\rfloor$ around all codewords. From the answer to the above part, we have that none of these spheres overlap. As a result the total number of words contained in all the spheres must be less than the total words of length n possible. The total words of length n are 2^{n}. Let $A(n, d)$ be the total number of codewords. Since $\sum_{i=0}^{t}\binom{n}{i}$ is the total number of words in a sphere of radius t, we get

$$
\begin{gathered}
A(n, d) \sum_{i=0}^{t}\binom{n}{i} \leq 2^{n} \\
A(n, d) \leq \frac{2^{n}}{\sum_{i=0}^{t}\binom{n}{i}}
\end{gathered}
$$

proving the Hamming bound.

