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Problem 1. (a) 50 ≡ 1 (mod 7), 51 ≡ 5 (mod 7), 52 ≡ 4 (mod 7), 53 ≡ 6 (mod 7),
54 ≡ 2 (mod 7), 55 ≡ 3 (mod 7). Since φ(7) = 6 and gcd(5, 7) = 1, from the Euler’s
theorem we have,

56 ≡ (mod 7)

(b) One can see from the previous part that 5k 6≡ 1 (mod 7) for 0 < k < 6. Since
φ(7) = 6, and gcd(5k, 7) = 1 for any k we have from the Euler’s theorem,

56k = (5k)6 ≡ 1 (mod 7)

(c) Clearly,

(5k − 1)(1 + 5k + 52k + 53k + 54k + 55k) = 5k(1 + 5k + 52k + 53k + 54k + 55k)

− (1 + 5k + 52k + 53k + 54k + 55k)

= 56k − 1 = 0

The last equality follows from the previous part. This implies that

(5k − 1)

5
∑

i=0

5ki = 0

Again, from the previous part we know that 5k 6≡ 1 (mod 7) for 0 < k < 6, this
implies that

5
∑

i=0

5ki = 0

for 0 < k < 6. For k = 0 we have

5
∑

i=0

5ki = 1 + 1 + 1 + 1 + 1 + 1 ≡ 6 (mod 7)

(e) From the definition of Fourier transform we have,

ûi =
∑

l=0,1,...,5

ul3
il



Performing all computations modulo 7, we have

û0 =
∑

l=0,1,...,5

ul3
0l =

∑

l=0,1,...,5

ul = 0

û1 =
∑

l=0,1,...,5

ul3
1l = 3

û2 =
∑

l=0,1,...,5

ul3
2l = 6

û3 =
∑

l=0,1,...,5

ul3
3l = 4

û4 =
∑

l=0,1,...,5

ul3
4l = 2

û5 =
∑

l=0,1,...,5

ul3
5l = 5

(f) From the definition of the inverse Fourier transform we have

uj = 6
∑

i=0,1,...,5

ûi5
ij

Since ûi is the ith component of the Fourier transform of u, we use the its definition
to get

uj = 6
∑

i=0,1,...,5

∑

l=0,1,...,5

ul3
il5ij

Since 5 · 3 ≡ 1 (mod 7), 3 is the inverse of 5, i.e. 3 = 5−1 modulo 7. Thus we have

uj = 6
∑

i=0,1,...,5

∑

l=0,1,...,5

ul5
−il5ij = 6

∑

i=0,1,...,5

∑

l=0,1,...,5

ul5
i(j−l)

=
∑

l=0,1,...,5

ul6
∑

i=0,1,...,5

(5(j−l))i

where in the last equality we exchanged the order of two summations.

Now using the results of part (c) we know that j = l implies
∑

i=0,1,...,5(5
(j−l))i = 6

(mod 7) and 6 · 6 = 36 ≡ 1 (mod 7). Also for j 6= l we have

∑

i=0,1,...,5

(5(j−l))i =
∑

i=0,1,...,5

(5ki)

where 0 < |k| < 6. Thus if k > 0 then from the results of part (c) we have that

∑

i=0,1,...,5

(5ki) = 0

if k < 0, then we know that 5−1 = 3, thus

∑

i=0,1,...,5

(5ki) =
∑

i=0,1,...,5

(3−ki)
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Here 0 < −k < 6. One can easily verify that the results of part (c) are valid if we
replace 5 by 3, thus we get

∑

i=0,1,...,5

(3−ki) = 0

and hence

uj =
∑

l=0,1,...,5

ul6
∑

i=0,1,...,5

(5(j−l))i = uj

(g) (i) Cyclic convolution y, of two vectors u, v is given by,

y[n] =
∑

m=0,1,...,5

u[m]v[n − m (mod 6)]

Note that here the signals are periodic with period 6. Thus we have

y[0] =
∑

m=0,1,...,5

u[m]v[−m (mod 6)]

= u[0]v[0] + u[1]v[5] + u[2]v[4] + u[3]v[3] + u[4]v[2] + u[5]v[1] = 5

y[1] =
∑

m=0,1,...,5

u[m]v[1 − m (mod 6)]

= u[0]v[1] + u[1]v[0] + u[2]v[5] + u[3]v[4] + u[4]v[3] + u[5]v[2] = 2

y[2] =
∑

m=0,1,...,5

u[m]v[2 − m (mod 6)]

= u[0]v[2] + u[1]v[1] + u[2]v[0] + u[3]v[5] + u[4]v[4] + u[5]v[3] = 5

y[3] =
∑

m=0,1,...,5

u[m]v[3 − m (mod 6)]

= u[0]v[3] + u[1]v[2] + u[2]v[1] + u[3]v[0] + u[4]v[5] + u[5]v[4] = 2

y[4] =
∑

m=0,1,...,5

u[m]v[4 − m (mod 6)]

= u[0]v[4] + u[1]v[3] + u[2]v[2] + u[3]v[1] + u[4]v[0] + u[5]v[5] = 5

y[5] =
∑

m=0,1,...,5

u[m]v[5 − m (mod 6)]

= u[0]v[5] + u[1]v[4] + u[2]v[3] + u[3]v[2] + u[4]v[1] + u[5]v[0] = 2 (1)
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(ii) Fourier transform of u is given by

û0 =
∑

l=0,1,...,5

ul3
0l =

∑

l=0,1,...,5

ul = 0

û1 =
∑

l=0,1,...,5

ul3
1l = 3

û2 =
∑

l=0,1,...,5

ul3
2l = 6

û3 =
∑

l=0,1,...,5

ul3
3l = 4

û4 =
∑

l=0,1,...,5

ul3
4l = 2

û5 =
∑

l=0,1,...,5

ul3
5l = 5

The Fourier transform of v is given by

v̂0 =
∑

l=0,1,...,5

vl3
0l =

∑

l=0,1,...,5

vl = 2

v̂1 =
∑

l=0,1,...,5

vl3
1l = 0

v̂2 =
∑

l=0,1,...,5

vl3
2l = 0

v̂3 =
∑

l=0,1,...,5

vl3
3l = 4

v̂4 =
∑

l=0,1,...,5

vl3
4l = 0

v̂5 =
∑

l=0,1,...,5

vl3
5l = 0

Multiplying û and v̂ component wise we get

ŵ0 = û0v̂0 = 0

ŵ1 = û1v̂1 = 0

ŵ2 = û2v̂2 = 0

ŵ3 = û3v̂3 = 16 = 2 (mod 7)

ŵ4 = û4v̂4 = 0

ŵ5 = û5v̂5 = 0

We take the inverse Fourier transform of ŵ = (000200) is given by w = (525252)
which matches the original calculation in equation (1).

(h) (a) For the canonical definition of RS codes, we consider n non-zero distinct elements
(a0, a1, . . . , an−1) of the field Fq where n < q. Then we consider all polynomials
A(x) of degree at most k − 1 and then evaluate (A(a0), A(a1), . . . , A(an−1)) to
form the code of length n and dimension k. Here n = 6 and q = 7. Thus clearly
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the only 6 non-zero distinct elements are 1, 2, 3, 4, 5, 6. Also since k = 2 we have
that A(x) = c1 + c2x where both c1, c2 ∈ F7. Thus there are 49 codewords.

Now we know from the previous part (a) that 3 is a generator of the field F7,
i.e. 3i for 0 ≤ i ≤ 5 covers all the non-zero elements of the field F7. Indeed
this is easily checked: 30 ≡ 1 (mod 7), 31 ≡ 3 (mod 7), 32 ≡ 2 (mod 7), 33 ≡ 6
(mod 7), 34 ≡ 4 (mod 7), 35 ≡ 5 (mod 7).

Now consider the Fourier transform of the set ĉ = (c1, c2, 0, 0, 0) for c1, c2 ∈ F7.
We have

ˆ̂ci =
∑

j=0,1,...,5

ĉj3
ij

= c1 + c23
i

The equivalence of the definitions is now got as follows: let the 6 distinct, non-
zero elements required for the canonical definition of RS codes be given by

a0 = 30 ≡ 1; a1 = 31 ≡ 3; a2 = 32 ≡ 2; a3 = 33 ≡ 6; a4 = 34 ≡ 4; a5 = 35 ≡ 5.

Thus according to the canonical definition of RS codes, a codeword is given by

yi = c1 + c23
i

which is exactly the Fourier transform of the set ĉ = (c1, c2, 0, 0, 0, 0).

(b) Code is generated by the generator matrix G as follows: consider the vector
u = (u1, . . . , uk), where k is the dimension of the code and each ui ∈ Fq. Then
a codeword x is given by u · G. Here k = 2, q = 7. Thus we have u = (u1, u2)
and the codeword x is given by

xi = u1g1i + u2g2i (mod 7) (2)

where (g1i, g2i) is the ith column of the matrix G.

From the Fourier transform definition of the RS code, we see that

xi = u1 + u23
i

where u1, u2 ∈ F7. Thus together with equation (2), this implies that the ith

column of G is given by (1, 3i). One easily verifies that G is thus given by

G =

(

1 1 1 1 1 1
1 3 2 6 4 5

)

.

(c) The codeword is given by

xi = 1 + 4 · 3i (mod 7)

Thus

x0 = 5; x1 = 6; x2 = 2; x3 = 4; x4 = 3; x5 = 0

Thus the transmitted codeword is given by (5, 6, 2, 4, 3, 0).
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(d) Let us denote the codeword by x = (x0, x1, x2, x3, x4, x5). Using the generator
matrix definition of the code we get,

c1 + 3c2 = 4 (3)

c1 + 6c2 = 6 (4)

c1 + 4c2 = 0 (5)

Solving equation (1), (2) we get c1 = 2, c2 = 3. Thus the transmitted codeword
is given by (541603).

Problem 2 (Hamming Bound). (i) If we take a codeword c and flip its values at some
j positions, we get a word which is at a Hamming distance j from the codeword c.
There are

(

n

j

)

ways of selecting j positions amongst n positions. Thus the number

of words at a Hamming distance j from the codeword c is given by
(

n

j

)

. Thus the
number of words contained in a sphere of radius i around c is given by

i
∑

j=0

(

n

j

)

(ii) If suppose the spheres of radius t = ⌊d−1
2
⌋ around two codewords x, y overlap, then

there exists a word z such that d(x, z) ≤ ⌊d−1
2
⌋ and d(y, z) ≤ ⌊d−1

2
⌋. Since Hamming

distance is a true distance, from the triangle inequality for distances we have

d(x, y) ≤ d(x, z) + d(y, z) ≤ ⌊
d − 1

2
⌋ + ⌊

d − 1

2
⌋ ≤ d − 1

But this is a contradiction, since the minimum distance between any two codewords
is d.

(iii) & (iv) Consider sphere of radius t = ⌊d−1
2
⌋ around all codewords. From the answer to the

above part, we have that none of these spheres overlap. As a result the total number
of words contained in all the spheres must be less than the total words of length n

possible. The total words of length n are 2n. Let A(n, d) be the total number of
codewords. Since

∑t

i=0

(

n

i

)

is the total number of words in a sphere of radius t, we
get

A(n, d)

t
∑

i=0

(

n

i

)

≤ 2n

A(n, d) ≤
2n

∑t

i=0

(

n

i

)

proving the Hamming bound.
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