ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout? Homework 5 Introduction to Communication Systems
October 16, 2008

PROBLEM 1. 1. $\underbrace{\begin{pmatrix} 1 & 2 & 3 \\ 2 & 2 & 2 \\ 3 & 3 & 1 \end{pmatrix}}_{\mathbf{A}} \underbrace{\begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix}}_{\mathbf{x}^T} = \underbrace{\begin{pmatrix} 2 \\ 1 \\ 0 \end{pmatrix}}_{\mathbf{u}^T}$

- 2. Over the integers: $\det(\mathbf{A}) = 1(2-6) 2(2-9) + 3(4-6) = 4$. Over F_7 : $\det(\mathbf{A}) = 1(2+1) + 5(2+5) + 3(4+1) = 3+0+1=4$.
- 3. We first concatenate the vector \mathbf{u} to the matrix A. Then we perform gaussian elimination:

$$\begin{pmatrix} 1 & 2 & 3 & 2 \\ 2 & 2 & 2 & 1 \\ 3 & 3 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & 5 & 3 & 4 \\ 3 & 3 & 1 & 0 \end{pmatrix} \longrightarrow \begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & 5 & 3 & 4 \\ 0 & 4 & 6 & 1 \end{pmatrix}$$
$$\longrightarrow \begin{pmatrix} 1 & 2 & 3 & 2 \\ 0 & 5 & 3 & 4 \\ 0 & 0 & 4 & 3 \end{pmatrix}$$

Thus:

$$4x_3 = 3 \implies 2 \cdot 4x_3 = 2 \cdot 3 \implies x_3 = 6,$$

 $5x_2 = 4 - 4 = 0 \implies x_2 = 0,$
 $x_1 = 2 - 4 = 5.$

- 4. You need n^3 operations.
- PROBLEM 2. 1. Since we are working over F_2 , $(u_i + v_i) \in \{0, 1\}$, for all $1 \le i \le n$. Thus $d(u, v) = \sum_{i=1}^{n} (u_i + v_i) \ge 0$. Moreover in order to have d(u, v) = 0, we must have $(u_i + v_i) = 0$, for all $1 \le i \le n$ and vice versa. Which means $u_i = v_i$, for all $1 \le i \le n$. Thus d(u, v) = 0 if and only if u = v.
 - 2. Since the sum is commutative, d(u, v) = d(v, u).
 - 3. $d(u, w) + d(w, v) = \sum_{i=1}^{n} (u_i + w_i) + \sum_{i=1}^{n} (w_i + v_i) = \sum_{i=1}^{n} (2w_i + u_i + v_i) \ge \sum_{i=1}^{n} (u_i + v_i) = d(u, v)$, where the inequality comes from the fact that $w_i \ge 0$.
- PROBLEM 3. 1. In order to be a subspace, S^{\perp} has to satisfy 3 conditions: $0 \in S^{\perp}$, S^{\perp} is closed under addition and S^{\perp} is closed under scalar multiplication. Let us show that it is indeed the case:
 - Let w = 0 and $s \in S$. We have $w \cdot s = \sum_i w_i s_i = 0$, since $w_i = 0, \forall i$. Thus, $w = 0 \in S^{\perp}$.
 - Let w and $v \in S^{\perp}$ and $s \in S$. $(v+w) \cdot s = \sum_{i} (v_i + w_i) s_i = \sum_{i} v_i s_i + \sum_{i} w_i s_i = v \cdot s + w \dot{s} = 0$. Thus $v + w \in S^{\perp}$.

- Let $c \in F$, $w \in S^{\perp}$ and $s \in S$. $cw \cdot s = \sum_{i} cw_{i}s_{i} = c\sum_{i} w_{i}s_{i} = c(w \cdot s) = 0$. Thus $cw \in S^{\perp}$.
- 2. To belong to S^{\perp} , w has to satisfy: $w_1 + w_2 = 0$, $w_3 + w_4 = 0$. Thus $S^{\perp} = \{0000, 0011, 1100, 1111\} = S$.

Problem 4. 1. No.

- $\begin{array}{l} \text{2. The code genrerates } 2^4 = 16 \text{ codewords:} \\ (0,0,0,0,0,0), (1,0,0,0,0,1,1), (0,1,0,0,1,1,0), (1,1,0,0,1,0,1), \\ (0,0,1,0,1,1,1), (1,0,1,0,1,0,0), (0,1,1,0,0,0,1), (1,1,1,0,0,1,0), \\ (0,0,0,1,1,0,1), (1,0,0,1,1,1,0), (0,1,0,1,0,1,1), (1,1,0,1,0,0,0), \\ (0,0,1,1,0,1,0), (1,0,1,1,0,0,1), (0,1,1,1,1,0,0), (1,1,1,1,1,1,1). \end{array}$
- 3. The transmitted codeword was (0,0,0,1,1,0,1). We can remove upto $2=d_{\min}-1$ bits of the codeword and stil be able to find what was the transmitted codeword.
- 4. $C^{\perp} = \{ \tilde{c} \in \{0,1\}^7 : \tilde{c} \cdot c = 0, \ \forall c \in C \}$ = $\{ (0,0,0,0,0,0), (0,1,1,1,1,0,0), (1,1,1,0,0,1,0), (1,0,1,1,0,0,1), (1,0,0,1,1,1,0), (1,1,0,0,1,0,1), (0,1,0,1,0,1,1), (0,0,1,0,1,1,1) \}.$
- 5. Since C is systematic, $G = (I_k, P)$, the parity-check matrix is simply $H = (P^T, I_{n-k})$, i.e.,

$$H = \left(\begin{array}{cccccc} 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 & 0 & 1 \end{array}\right).$$

- 6. s = (1,0,0), which corresponds to the 5th column of H. Since we know that there is only one error, the error vector should be (0,0,0,0,1,0,0). Thus the transmitted codeword should be (0,0,0,1,1,0,1).
- 7. Smallest number of errors is $3 = d_{\min}$.

PROBLEM 5. We are giving two different solutions. The first one follows the hint.

- 1. Let $d = d_1 + d_2$, where d is the minimum diatance between two codewords and d_1 is the disance among the k first bits and d_2 the distance among the n k last bits. We consider the binary matrix of size $(2^k) \times n$ formed by the 2^k codewords. We remove the n k last columns. It remains 2^k words of length k and the minimum distance between two of these words is thus $d_1 \leq 1$. Moreover $d_2 \leq n k$, since it is the distance among n k bits. Combining everything, we have $d = d_1 + d_2 \leq 1 + n k$.
- 2. The code contains 2^k codewords. Assume we remove the d-1 last bits of all codewords. We get 2^k words of length n-d+1 which are all distinct, since the minimum distance is d and we have removed only d-1 bits. The maximum number of words of length n-d+1 is 2^{n-d+1} . Thus $2^k \leq 2^{n-d+1}$, which is equivalent to $d \leq n-k+1$.