ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout?
Introduction to Communication Systems
Homework 5
October 16, 2008

Problem 1.

$$
\text { 1. } \underbrace{\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 2 & 2 \\
3 & 3 & 1
\end{array}\right)}_{\mathbf{A}} \underbrace{\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)}_{\mathbf{x}^{T}}=\underbrace{\left(\begin{array}{l}
2 \\
1 \\
0
\end{array}\right)}_{\mathbf{u}^{T}}
$$

2. Over the integers: $\operatorname{det}(\mathbf{A})=1(2-6)-2(2-9)+3(4-6)=4$.

Over $F_{7}: \operatorname{det}(\mathbf{A})=1(2+1)+5(2+5)+3(4+1)=3+0+1=4$.
3. We first concatenate the vector \mathbf{u} to the matrix A. Then we perform gaussian elimination:

$$
\begin{aligned}
\left(\begin{array}{llll}
1 & 2 & 3 & 2 \\
2 & 2 & 2 & 1 \\
3 & 3 & 1 & 0
\end{array}\right) & \longrightarrow\left(\begin{array}{llll}
1 & 2 & 3 & 2 \\
0 & 5 & 3 & 4 \\
3 & 3 & 1 & 0
\end{array}\right) \\
& \longrightarrow\left(\begin{array}{llll}
1 & 2 & 3 & 2 \\
0 & 5 & 3 & 4 \\
0 & 0 & 4 & 3
\end{array}\right)
\end{aligned}
$$

Thus:

$$
\begin{aligned}
& 4 x_{3}=3 \Longrightarrow 2 \cdot 4 x_{3}=2 \cdot 3 \Longrightarrow x_{3}=6, \\
& 5 x_{2}=4-4=0 \Longrightarrow x_{2}=0 \\
& x_{1}=2-4=5 .
\end{aligned}
$$

4. You need n^{3} operations.

Problem 2. 1. Since we are working over $F_{2},\left(u_{i}+v_{i}\right) \in\{0,1\}$, for all $1 \leq i \leq n$. Thus $d(u, v)=\sum_{i=1}^{n}\left(u_{i}+v_{i}\right) \geq 0$. Moreover in order to have $d(u, v)=0$, we must have $\left(u_{i}+v_{i}\right)=0$, for all $1 \leq i \leq n$ and vice versa. Which means $u_{i}=v_{i}$, for all $1 \leq i \leq n$. Thus $d(u, v)=0$ if and only if $u=v$.
2. Since the sum is commutative, $d(u, v)=d(v, u)$.
3. $d(u, w)+d(w, v)=\sum_{i=1}^{n}\left(u_{i}+w_{i}\right)+\sum_{i=1}^{n}\left(w_{i}+v_{i}\right)=\sum_{i=1}^{n}\left(2 w_{i}+u_{i}+v_{i}\right) \geq \sum_{i=1}^{n}\left(u_{i}+\right.$ $\left.v_{i}\right)=d(u, v)$, where the inequality comes from the fact that $w_{i} \geq 0$.

Problem 3. 1. In order to be a subspace, S^{\perp} has to satisfy 3 conditions: $0 \in S^{\perp}$, S^{\perp} is closed under addition and S^{\perp} is closed under scalar multiplication. Let us show that it is indeed the case:

- Let $w=0$ and $s \in S$. We have $w \cdot s=\sum_{i} w_{i} s_{i}=0$, since $w_{i}=0$, $\forall i$. Thus, $w=0 \in S^{\perp}$.
- Let w and $v \in S^{\perp}$ and $s \in S .(v+w) \cdot s=\sum_{i}\left(v_{i}+w_{i}\right) s_{i}=\sum_{i} v_{i} s_{i}+\sum_{i} w_{i} s_{i}=$ $v \cdot s+w \dot{s}=0$. Thus $v+w \in S^{\perp}$.
- Let $c \in F, w \in S^{\perp}$ and $s \in S . c w \cdot s=\sum_{i} c w_{i} s_{i}=c \sum_{i} w_{i} s_{i}=c(w \cdot s)=0$. Thus $c w \in S^{\perp}$.

2. To belong to S^{\perp}, w has to satisfy: $w_{1}+w_{2}=0, w_{3}+w_{4}=0$. Thus $S^{\perp}=$ $\{0000,0011,1100,1111\}=S$.

Problem 4. 1. No.
2. The code genrerates $2^{4}=16$ codewords:

$$
\begin{aligned}
& (0,0,0,0,0,0,0),(1,0,0,0,0,1,1),(0,1,0,0,1,1,0),(1,1,0,0,1,0,1), \\
& (0,0,1,0,1,1,1),(1,0,1,0,1,0,0),(0,1,1,0,0,0,1),(1,1,1,0,0,1,0), \\
& (0,0,0,1,1,0,1),(1,0,0,1,1,1,0),(0,1,0,1,0,1,1),(1,1,0,1,0,0,0), \\
& (0,0,1,1,0,1,0),(1,0,1,1,0,0,1),(0,1,1,1,1,0,0),(1,1,1,1,1,1,1) .
\end{aligned}
$$

3. The transmitted codeword was $(0,0,0,1,1,0,1)$. We can remove upto $2=d_{\min }-1$ bits of the codeword and stil be able to find what was the transmitted codeword.
4. $C^{\perp}=\left\{\tilde{c} \in\{0,1\}^{7}: \tilde{c} \cdot c=0, \forall c \in C\right\}$
$=\{(0,0,0,0,0,0,0),(0,1,1,1,1,0,0),(1,1,1,0,0,1,0),(1,0,1,1,0,0,1)$, $(1,0,0,1,1,1,0),(1,1,0,0,1,0,1),(0,1,0,1,0,1,1),(0,0,1,0,1,1,1)\}$.
5. Since C is systematic, $G=\left(I_{k}, P\right)$, the parity-check matrix is simply $H=\left(P^{T}, I_{n-k}\right)$, i.e.,

$$
H=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right)
$$

6. $s=(1,0,0)$, which corresponds to the 5 th column of H. Since we know that there is only one error, the error vector should be $(0,0,0,0,1,0,0)$. Thus the transmitted codeword should be ($0,0,0,1,1,0,1$).
7. Smallest number of errors is $3=d_{\text {min }}$.

Problem 5. We are giving two different solutions. The first one follows the hint.

1. Let $d=d_{1}+d_{2}$, where d is the minimum diatance between two codewords and d_{1} is the disance among the k first bits and d_{2} the distance among the $n-k$ last bits. We consider the binary matrix of size $\left(2^{k}\right) \times n$ formed by the 2^{k} codewords. We remove the $n-k$ last columns. It remains 2^{k} words of length k and the minimum distance between two of these words is thus $d_{1} \leq 1$. Moreover $d_{2} \leq n-k$, since it is the distance among $n-k$ bits. Combining everything, we have $d=d_{1}+d_{2} \leq 1+n-k$.
2. The code contains 2^{k} codewords. Assume we remove the $d-1$ last bits of all codewords. We get 2^{k} words of length $n-d+1$ which are all distinct, since the minimum distance is d and we have removed only $d-1$ bits. The maximum number of words of length $n-d+1$ is 2^{n-d+1}. Thus $2^{k} \leq 2^{n-d+1}$, which is equivalent to $d \leq n-k+1$.
