ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Handout 18	Signal Processing for Communications
Homework 11. Due: May 18, 2009	May 11, 2009

PROBLEM 1. Let x(t) $t \in \mathbb{R}$ be a complex signal with Fourier transform $X(j\Omega)$. Prove the following:

1. $x(t-\tau) \xleftarrow{FT} e^{-j\tau\Omega} X(j\Omega).$ 2. $X(jt) \xleftarrow{FT} 2\pi x(-\Omega).$ Hint: $e^{jt\Omega_0} \xleftarrow{FT} 2\pi \delta(\Omega - \Omega_0).$ 3. $x(at) \xleftarrow{FT} \frac{1}{a} X(j\frac{\Omega}{a}).$

PROBLEM 2. Let $x_1(t)$ and $x_2(t)$, $t \in \mathbb{R}$ be complex signals, and let "*" denote the convolution operator. Show that

1. Show that

$$(x_1 * x_2)(t) \xleftarrow{FT} X_1(j\Omega) X_2(j\Omega).$$

2. Show Parseval's relation:

$$\int_{-\infty}^{\infty} |x_1(t)|^2 dt = \frac{1}{2\pi} \int_{-\infty}^{\infty} |X_1(j\Omega)|^2 d\Omega.$$

PROBLEM 3. Consider Figure 9.13 on p. 260 in the book (otherwise, see the first figure in Problem 5). The input and the output to the system is given by

$$Y_c(j\Omega) = H(e^{j\Omega T_s})X_c(j\Omega),$$

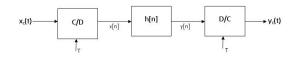
where X_c and Y_c are the *FT*s of the input $x_c(t)$ and output $y_c(t)$ respectively. We want the system to output the derivative of its input, i.e., $y_c(t) = x'_c(t)$.

- 1. Show that $x'(t) \xleftarrow{FT} j\Omega X(j\Omega)$. Check this for $x(t) = \cos(\Omega_0 t)$.
- 2. Following Figure 9.13, we assume that y[n] = x'[n]. Show that

$$h[n] = \begin{cases} 0 & \text{for } n = 0\\ \frac{(-1)^n}{nT_s} & \text{otherwise} \end{cases}.$$

PROBLEM 4. Problem 9.4 in the book.

PROBLEM 5. Consider the following system:



Suppose that the frequency response of the input is given in Figure 1. Determine the largest possible value of T and find and plot $H(e^{j\omega})$, the DTFT of h[n] for which

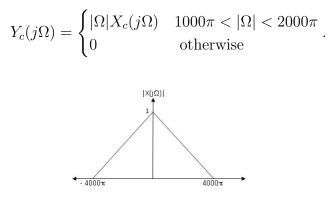


Figure 1: