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Problem 1. 1. (a) Assume that d divides b. Since d = gcd(a, m), from the Bezout’s
identity we have,

d = αa + βm

for some integers α, β. Since d divides b we have b = dk for some integer k.
Thus d = b

k
. Thus

b

k
= αa + βm

b = (kα)a + kβm

which implies that m divides a(kα)− b. Thus we can set x = kα as the solution
of the congruence equation.

(b) Since the congruence equation has a solution, there exists an integer x such that

ax − b = mq (1)

for some integer q. Dividing by d we get

a

d
x −

b

d
=

m

d
q

since d is the gcd(a, m), d divides both a, m. As a result we have

b

d
=

a

d
x −

m

d
q

The r.h.s of the above equation is an integer, which implies that d divides b.

2. We have

ac − bc = mq

for some integer q. Dividing by d = gcd(c, m) we get

a
c

d
− b

c

d
=

m

d
q

Now since d is the gcd(c, m), we have that gcd( c
d
, m

d
) = 1, thus from the above

equation we must have that m
d

divides a − b, which proves the statement.

Problem 2. From the problem we can formulate the following two congruence equations
for k:

2k ≡ 4 (mod 5)

5k ≡ 30 (mod 35)



To solve this we can use the Chinese remainder theorem. We can covert the above congru-
ences to the standard form by using part 2 of the previous problem. Thus we have

k ≡ 2 (mod 5)

k ≡ 6 (mod 7)

using c = 2, m = 5 for the first congruence and c = 5, m = 35 for the second congruence.
We can now solve the above by extended Euclid. The answer is any x ≡ 27 (mod 35) .

Problem 3. In this problem we notice that in order to compute ab we can look at the
binary representation of b = b0 + 2b1 + 22b2 + 23b3 + · · · + 2kbk where bi ∈ {0, 1} and thus
compute the numbers a, a2, a4, a8, . . . , a2

k

, where 2k is the nearest power of 2 less than or
equal to b. To compute these numbers we require at the most log

2
b operations. Indeed,

given a we get a2 in one operation. From a2 we get a4 = (a2)(a2) in one operation. With
a4 we get a8 = (a4)(a4) in one operation and so on we get a2k

in at most log
2
b operations.

Now to compute ab, we compute abk2k

· abk−12k

· · ·ab0 which requires at the most log2 b

operations. Thus total operations required is at most 2 log
2
b.

Problem 4. 1. We need to find k which is the inverse of K modulo φ(131×137). Here
k = 3969.

2. The number corresponding to the plaintext αβγ is given by 262Nα + 26Nβ + γ,
where Nα is the number of the letter α etc. This is clear since we are ordering
each triplet of letters lexicographically. Thus the group THE maps to the number
262 × 19 + 26 × 7 + 4 = 13030.

3. We use the normal RSA scheme to get the plaintext GRADED.

Problem 5. The digital signature is just the standard RSA with the roles of k, K reversed.
But all the calculations to show that RSA works can be replicated for this case in a
straightforward manner. Indeed Asquare can verify by the public key K as follows:

DK(C) (mod m) = DK(Ek(P )) (mod m)

= (P k)K (mod m) = (P K)k (mod m)

= Dk(EK(P )) (mod m)

= P

the last equation is true because K, k are public, private keys of the RSA scheme.
Their love is safe with very high probability because Babubhai may try various attacks.

(i) Trying to find a key k1 such that Kk1 ≡ 1 (mod φ(m)) is very difficult, since it involves
the knowledge φ(m) which is very difficult to determine if m = pq with p, q being very
large prime numbers. (ii) He may try to solve C ≡ P k (mod m) to find Yakari’s private
key k. He is then faced with the discrete logarithm problem which is again very difficult
to solve if m is very large. (iii) If he changes the poem P to P1 then Asquare can decrypt
and realise that DK(C) 6= P1.
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