ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences

Problem 1. 1. (a) Assume that d divides b. Since $d=\operatorname{gcd}(a, m)$, from the Bezout's identity we have,

$$
d=\alpha a+\beta m
$$

for some integers α, β. Since d divides b we have $b=d k$ for some integer k. Thus $d=\frac{b}{k}$. Thus

$$
\begin{aligned}
\frac{b}{k} & =\alpha a+\beta m \\
b & =(k \alpha) a+k \beta m
\end{aligned}
$$

which implies that m divides $a(k \alpha)-b$. Thus we can set $x=k \alpha$ as the solution of the congruence equation.
(b) Since the congruence equation has a solution, there exists an integer x such that

$$
\begin{equation*}
a x-b=m q \tag{1}
\end{equation*}
$$

for some integer q. Dividing by d we get

$$
\frac{a}{d} x-\frac{b}{d}=\frac{m}{d} q
$$

since d is the $\operatorname{gcd}(a, m), d$ divides both a, m. As a result we have

$$
\frac{b}{d}=\frac{a}{d} x-\frac{m}{d} q
$$

The r.h.s of the above equation is an integer, which implies that d divides b.
2. We have

$$
a c-b c=m q
$$

for some integer q. Dividing by $d=\operatorname{gcd}(c, m)$ we get

$$
a \frac{c}{d}-b \frac{c}{d}=\frac{m}{d} q
$$

Now since d is the $\operatorname{gcd}(c, m)$, we have that $\operatorname{gcd}\left(\frac{c}{d}, \frac{m}{d}\right)=1$, thus from the above equation we must have that $\frac{m}{d}$ divides $a-b$, which proves the statement.

Problem 2. From the problem we can formulate the following two congruence equations for k :

$$
\begin{aligned}
2 k & \equiv 4(\bmod 5) \\
5 k & \equiv 30(\bmod 35)
\end{aligned}
$$

To solve this we can use the Chinese remainder theorem. We can covert the above congruences to the standard form by using part 2 of the previous problem. Thus we have

$$
\begin{aligned}
k & \equiv 2(\bmod 5) \\
k & \equiv 6(\bmod 7)
\end{aligned}
$$

using $c=2, m=5$ for the first congruence and $c=5, m=35$ for the second congruence. We can now solve the above by extended Euclid. The answer is any $x \equiv 27(\bmod 35)$.

Problem 3. In this problem we notice that in order to compute a^{b} we can look at the binary representation of $b=b_{0}+2 b_{1}+2^{2} b_{2}+2^{3} b_{3}+\cdots+2^{k} b_{k}$ where $b_{i} \in\{0,1\}$ and thus compute the numbers $a, a^{2}, a^{4}, a^{8}, \ldots, a^{2^{k}}$, where 2^{k} is the nearest power of 2 less than or equal to b. To compute these numbers we require at the $\operatorname{most} \log _{2} b$ operations. Indeed, given a we get a^{2} in one operation. From a^{2} we get $a^{4}=\left(a^{2}\right)\left(a^{2}\right)$ in one operation. With a^{4} we get $a^{8}=\left(a^{4}\right)\left(a^{4}\right)$ in one operation and so on we get $a^{2^{k}}$ in at most $\log _{2} b$ operations. Now to compute a^{b}, we compute $a^{b_{k} 2^{k}} \cdot a^{b_{k-1} 2^{k}} \cdots a^{b_{0}}$ which requires at the most $\log _{2} b$ operations. Thus total operations required is at most $2 \log _{2} b$.

Problem 4. 1. We need to find k which is the inverse of K modulo $\phi(131 \times 137)$. Here $k=3969$.
2. The number corresponding to the plaintext $\alpha \beta \gamma$ is given by $26^{2} N_{\alpha}+26 N_{\beta}+\gamma$, where N_{α} is the number of the letter α etc. This is clear since we are ordering each triplet of letters lexicographically. Thus the group THE maps to the number $26^{2} \times 19+26 \times 7+4=13030$.
3. We use the normal RSA scheme to get the plaintext GRADED.

Problem 5. The digital signature is just the standard RSA with the roles of k, K reversed. But all the calculations to show that RSA works can be replicated for this case in a straightforward manner. Indeed Asquare can verify by the public key K as follows:

$$
\begin{aligned}
D_{K}(C) \quad(\bmod m) & =D_{K}\left(E_{k}(P)\right) \quad(\bmod m) \\
& =\left(P^{k}\right)^{K} \quad(\bmod m)=\left(P^{K}\right)^{k} \quad(\bmod m) \\
& =D_{k}\left(E_{K}(P)\right) \quad(\bmod m) \\
& =P
\end{aligned}
$$

the last equation is true because K, k are public, private keys of the RSA scheme.
Their love is safe with very high probability because Babubhai may try various attacks. (i) Trying to find a key k_{1} such that $K k_{1} \equiv 1(\bmod \phi(m))$ is very difficult, since it involves the knowledge $\phi(m)$ which is very difficult to determine if $m=p q$ with p, q being very large prime numbers. (ii) He may try to solve $C \equiv P^{k}(\bmod m)$ to find Yakari's private key k. He is then faced with the discrete logarithm problem which is again very difficult to solve if m is very large. (iii) If he changes the poem P to P_{1} then Asquare can decrypt and realise that $D_{K}(C) \neq P_{1}$.

