School of Computer and Communication Sciences

Handout 22
Signal Processing for Communications
Solutions to Homework 10

Problem 1 (7.9.). a.

$$
\begin{aligned}
H(z) & =\frac{1+z^{-1}}{1-1.6 \cos (2 \pi / 7) z^{-1}+0.64 z^{-2}} \\
& =\frac{1+z^{-1}}{1-1.6 \frac{e^{j \frac{2 \pi}{7}}+e^{-j \frac{2 \pi}{7}}}{2} z^{-1}+0.64 z^{-2}} \\
& =\frac{1+z^{-1}}{\left(1-0.8 e^{j \frac{2 \pi}{7}} z^{-1}\right)\left(1-0.8 e^{-j \frac{2 \pi}{7}} z^{-1}\right)}
\end{aligned}
$$

Therefore, the zero of $H(z)$ is $z=-1$, whereas the poles are $z=0.8 e^{j \frac{2 \pi}{7}}$ and $z=$ $0.8 e^{-j \frac{2 \pi}{7}}$. The pole-zero plot is given in Figure 3. Since the filter is causal, we have $R O C=\{z:|z|>0.8\}$.
b. The magnitude of the filter's frequency response is given in Figure 4.
c. Figures 1 and 2 show two implementions of the filter.

Figure 1:

Figure 2:

Figure 3:

Problem 2 (7.11.). The channel output is given by

$$
y[n]=x[n]-\alpha x[n-D] .
$$

Figure 4:

Figure 5:
a. $H(z)=1-\alpha z^{-D}$.
b. With $\alpha=0.1$ and $D=12$ we have $H(z)=1-0.1 z^{-12}$. This transfer function has no poles, and its 12 zeros are at $z_{k}=0.862 e^{j \frac{2 \pi}{12} k}, \quad k=0, \ldots, 11$.
c. The frequency response of the channel is $H\left(e^{j \omega}\right)=1-0.1 e^{-j \omega 12}$. The squared magnitude response is given in Figure 5.
d. We want $y[n] * g[n]=x[n]$, i.e., $G(z)=1 / H(z)=1 /\left(1-\alpha z^{-D}\right)$.
e. $G(z)$'s zeros and poles are $H(z)$'s poles and zeros, respectively. That is, $G(z)$ has no zeros, and 12 poles at $z_{k}=0.862 e^{j \frac{2 \pi}{12} k}, \quad k=0, \ldots, 11$. Since the system is causal, the ROC is the set $\{z:|z|>0.862\}$.

Problem 3 (9.1.). \quad a. $x_{0}=\sum_{n=-\infty}^{\infty} x[n] \operatorname{rect}(t-n)$.

$$
\begin{aligned}
X_{0}(j \Omega) & =\int_{-\infty}^{\infty} \sum_{n} x[n] \operatorname{rect}(t-n) e^{-j \Omega t} d t \\
& =\sum_{n} x[n] \int_{-\infty}^{\infty} \operatorname{rect}(t-n) e^{-j \Omega t} d t \\
& =\sum_{n} x[n] \operatorname{sinc}(\Omega / 2) e^{-j \Omega n} d t \\
& =\frac{1}{2 \pi} \operatorname{sinc}\left(\frac{\Omega}{2 \pi}\right) \sum_{n} x[n] e^{-j \Omega n} d t \\
& =\frac{1}{2 \pi} \operatorname{sinc}\left(\frac{\Omega}{2 \pi}\right) X\left(e^{j \Omega}\right)
\end{aligned}
$$

Figure 6:
b.

$$
\begin{aligned}
X(j \Omega) & =\int_{-\infty}^{\infty} \sum_{n} x[n] \operatorname{sinc}(t-n) e^{-j \Omega t} d t \\
& =\sum_{n} x[n] \int_{-\infty}^{\infty} \operatorname{sinc}(t-n) e^{-j \Omega t} d t \\
& =\sum_{n}^{n} x[n] \operatorname{sinc}(\Omega / 2) e^{-j \Omega n} d t \\
& =\frac{1}{2 \pi} \operatorname{rect}\left(\frac{\Omega}{2 \pi}\right) X\left(e^{j \Omega}\right)
\end{aligned}
$$

As it is noted in the problem statement, the zero-order hold introduces a distortion in the interpolated signal with respect to the sinc interpolaion in the region $\pi \leq \Omega \leq \pi$. Furthermore, it makes the signal non-bandlimited.
c. The signal $x(t)$ can be obtained from the zero-order hold interpolation $x_{0}(t)$ as $x(t)=$ $x_{0}(t) * g(t)$, with

$$
G(j \Omega)=\frac{\operatorname{rect}\left(\frac{\Omega}{2 \pi}\right)}{\operatorname{sinc}\left(\frac{\Omega}{2 \pi}\right)}
$$

$G(j \Omega)$ is plotted in Figure 6.

