ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

School of Computer and Communication Sciences
Handout 17
Introduction to Communication Systems
Homework 10
November 20, 2008

Problem 1 (Congruences). 1. If $a \equiv a^{\prime}(\bmod m)$, show that for any integer t

$$
a t \equiv a^{\prime} t(\bmod m)
$$

2. If $a d \equiv a^{\prime} d(\bmod m)$ and d and m are relatively prime, show that

$$
a \equiv a^{\prime}(\bmod m)
$$

Does this property still hold if d and m are not relatively prime?
Problem 2 (Euler's Birthday Party). Euler invites a group of n friends to celebrate his 251-st birthday. He has ordered a humongous Nusstorte from Spruengli. The cake is already been cut into 5005 pieces. Euler asks his n friends to split into subgroups of equal size. Amazingly, each group gets exactly the same number of pieces. How many possible choices of n are there?

Problem 3 (A trip to China Town). (i) Four friends go to eat dim sum at a restaurant. They order k pieces. After dividing equally they are left with 3 pieces. Since the food was delicious, the next evening they take along one additional friend and order again k pieces. Dividing again fairly, they are left with 2 pieces. One piece costs 5 CHF and a single piece per person is not enough. What is the minimum amount of money they paid ?
(ii) Assume exactly the same situation as above except that on the second evening they take along two additional friends.

Problem 4 (RSA Encryption). In this problem we perform RSA encryption and decryption. Assume that each letter of the English alphabet is represented by its position, i.e. $A=1, B=2, \ldots$ For the RSA scheme, we encode using integers modulo 33. Thus $m=33$. Choose the public key to be 7 .

- Compute the secret key.
- Pair up with the person next to you. Encrypt a plaintext of size at least 10 characters, for example BONAPPETITE. Ask your neighbor to decrypt.

