
Chapter 3

Number theory and cryptography

5

3.1 Cryptography: Overview

3.1.1 Aim of Cryptography

The need to protect information is as old as civilisation itself. At first used only by the military
and diplomats, it has gained much commercial use with the appearance of computer networks.
For instance, consider a financial transaction which is accomplished electronically. Clearly,
the user of such a system will demand that any data exchanged during such a transaction be
confidential and the provider of the system will want to ensure that fraudulent use of the system
is excluded. A further concern that has to be addressed is the issue of authentification (how can
I be certain that a message was really written by the person who claims to be the author). This
requires the construction of the equivalent of a signature.

The principle of cryptography is represented in Fig. 3.1. During the encryption (or enciphering)
operation, the plaintext P is transformed by a function E with key K into the ciphertext C =
EK(P). This ciphertext is then sent to the receiver who applies the decryption algorithm D,
which is the inverse of the encryption: P = D(C) = D(EK(P)). We suppose that an “intruder”
is listening and can reproduce the whole ciphertext. He does not, however, know the encryption
key although it is assumed that the specific functions used are known. This assumption is known
as Kerckhoffs’ thesis. Sometimes the intruder not only listens in on the communication channel
(passive intrusion), but can alter the messages or insert his own messages into the communication
channel (active intrusion). The art of composing ciphertexts is known as cryptography, the art
of breaking them is cryptanalysis.

P PEncryption method

Intruder

C = EK(P)

Decryption method

Encryption key K Decryption key

Figure 3.1: Model of a cryptosystem.

Depending on the cryptanalyst’s knowledge, we can distinguish between various types of attacks.
If he only has access to samples of ciphertext, but does not know the corresponding plaintext,
then we speak of a ciphertext-only attack. Clearly a cipher must be designed to be secure
against such an attack, since by assumption of our model the intruder always has access to the
ciphertext. If the cryptanalyst can analyse pairs of plaintext and corresponding ciphertext, this
is known as a known plaintext attack. Such an attack is possible if the intruder at some point
gains access to past records of plaintext and the corresponding transmitted message. Clearly,

6

as we cannot be certain that this will never happen, our system must also be able to resist this
kind of attack. Finally, sometimes the cryptanalyst is lucky enough to be able to obtain the
ciphertext for any plaintext of his choice (imagine for example that he gains temporary access
to the encryption machine, but cannot see the key); this is called a chosen plaintext attack.

The most important reason for Kerckhoffs’ assumption, i.e., that we assume that the encryption
algorithm is known, is the following. History has shown that a secret does not stay a secret for
long once it is shared by several people, so the design is unlikely to remain unknown. Although
it would be long and costly to change the encryption algorithm each time the method is com-
promised, it is not a problem to frequently change the key. The basic encryption model is thus
composed of a constant and known general encryption method, parametrized by a secret and
easily modifiable key. Given a cryptosystem, we would like to have the guarantee that it cannot
(easily) be broken. The strongest form of such a guarantee are the so-called unconditionally se-
cure ciphers. These are ciphers which cannot be broken even if we assume that the attacker has
infinite computational power. Slightly weaker are the so-called computationally secure ciphers,
which are cipher which could in principle be broken by a cryptanalyst, but breaking them would
require computational resources many orders of magnitude beyond what is available.

3.2 Symmetric Ciphers

We shall now present a first category of ciphers for which the same secret key is used for
encryption and decryption. Hence they are named symmetric ciphers. These ciphers require
communicating the key to the receiver via a secure channel as shown in Fig. 3.2. We shall later
study asymmetric ciphers, which don’t use the same key for encryption and decryption.

Alice C = EK(P) DK(C) = P Bob

Oscar

Key
Generator Secure channel

K K

Figure 3.2: Symmetric Cipher.

7

3.2.1 Substitution Ciphers

Julius Caesar used an encryption mechanism which consisted in a rotation of all letters of the
alphabet by three positions. So a became d, b became e, . . . and z became c. Caesar’s encryption
method can be generalised to allow a rotation of k letters, instead of always using 3 letters. In
this case, k is the key of the general encryption method which consists in a rotation of the
alphabet.

Example 1. In the movie Space Odyssey 2001, the name of the computer is HAL, which is an
actual ciphertext. What is the plaintext? And what is the key k?

Clearly, the rotation cipher is not very secure. Since by assumption (Kerckhoffs’ thesis) the
cryptanalyst is aware of the fact that we use a rotation cipher, there are only 26 possible keys
and it is trivial to try them all to find the correct key.

A more secure generalisation is to replace each letter of the alphabet in the plaintext by another
letter, without respecting a rotation mapping between the two alphabets. This general system is
called monoalphabetic substitution, the key being the correspondence table between the plaintext
and ciphertext alphabets. For example, we could take this key:

plaintext alphabet: a b c d e f g h i j k l m
ciphertext alphabet: Q W E R T Z U I O P A S D

plaintext alphabet: n o p q r s t u v w x y z
ciphertext alphabet: F G H J K K Y X C V B N M

For an alphabet of D characters, there are D! possible keys. Since 26! ∼ 1026, a very large
number, it seems that this cipher is quite secure. Unfortunately, this is not quite so. The
cryptanalyst greatly eases his task by looking at the distribution of letter frequencies in the
ciphertext. In English language, for example, the following table shows the corresponding letter
frequencies.

letter frequency[%] letter frequency[%]

E 13 M 2
T 9 W 2
A 8 F 2
O 8 G 2
I 7 Y 2
N 7 P 2
S 6 B 2
H 6 V 1
R 6 K 1
D 4 J 0
L 4 X 0
C 3 Q 0
U 3 Z 0

8

We see that the most frequent letters are e and t which the cryptanalyst can then try to match
to the two most frequent letters in the ciphertext. He will then probably find many triplets of
the form tXe, which strongly suggest that X corresponds to h. By continuing in this manner
letter by letter, he can find the encryption key reasonably quickly.

Furthermore, he can sometimes guess certain words depending on the context. For instance,
if the message concerns a stock-market transaction, the message may well contain the words
“share” or “trading”. . .

In order to make the cryptanalist’s task more difficult, it is thus necessary to “hide” the dis-
tribution of letter frequencies in such a way that letters like e, a and t be not so easy to spot.
One way of doing this is to introduce several cyclically shifted alphabets, which gives a Vigenère
cipher. This is an example of encryption using polyalphabetic substitution:

original alphabet A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

row A A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

row B B C D E F G H I J K L M N O P Q R S T U V W X Y Z A

row C C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

row D D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

row E E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

row F F G H I J K L M N O P Q R S T U V W X Y Z A B C D E

row G G H I J K L M N O P Q R S T U V W X Y Z A B C D E F

row H H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

row I I J K L M N O P Q R S T U V W X Y Z A B C D E F G H

row J J K L M N O P Q R S T U V W X Y Z A B C D E F G H I

row K K L M N O P Q R S T U V W X Y Z A B C D E F G H I J

row L L M N O P Q R S T U V W X Y Z A B C D E F G H I J K

row M M N O P Q R S T U V W X Y Z A B C D E F G H I J K L

row N N O P Q R S T U V W X Y Z A B C D E F G H I J K L M

row O O P Q R S T U V W X Y Z A B C D E F G H I J K L M N

row P P Q R S T U V W X Y Z A B C D E F G H I J K L M N O

row Q Q R S T U V W X Y Z A B C D E F G H I J K L M N O P

row R R S T U V W X Y Z A B C D E F G H I J K L M N O P Q

row S S T U V W X Y Z A B C D E F G H I J K L M N O P Q R

row T T U V W X Y Z A B C D E F G H I J K L M N O P Q R S

row U U V W X Y Z A B C D E F G H I J K L M N O P Q R S T

row V V W X Y Z A B C D E F G H I J K L M N O P Q R S T U

row W W X Y Z A B C D E F G H I J K L M N O P Q R S T U V

row X X Y Z A B C D E F G H I J K L M N O P Q R S T U V W

row Y Y Z A B C D E F G H I J K L M N O P Q R S T U V W X

row Z Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

As in a monoalphabetic cipher, this polyalphabetic cipher also has a key, which is usually a
short, easy to remember word, like GOODBY E (instead of the complete table of 26 letters

9

in the monoalphabetic case). The key is constantly repeated underneath the plaintext, and
indicates which row of the previous table should be used for the encryption. In the following
example, v is encoded with the alphabet of row G, so it becomes B, and so on:

plaintext: v i g e n e r e s c i p h e r

key: G O O D B Y E G O O D B Y E G

ciphertext: B W U H O C V K G Q L Q F I X

Although it is much more secure than a monoalphabetic substitution cipher, a polyalphabetic
substitution cipher can still be broken by a ciphertext-only attack. The trick lies in guessing
the length of the key.

A famous example of a cryptosystem based on polyalphabetic substitution is the ENIGMA ma-
chine used by the German forces and their allies during the second world war. The substitution
was made using three rotors which each had 26 positions. The initial positions of the rotors
where encoded in the head of the message, which was a weakness exploited by British, French
and Polish cryptanalysts. (See http://www.bletchleypark.org.uk/ for more details.)

3.2.2 Transposition Ciphers

A transposition cipher changes the order of the letters of the messages, but does not “disguise”
them.

Example 2. To illustrate such a cipher, we will encrypt some plaintext with the key MEGABUCK:

plaintext: pleasetransferonemilliondollarsto
myswissbankaccountsixtwotwo

key: M E G A B U C K

p l e a s e t r
a n s f e r o n
e m i l l i o n
d o l l a r s t
o m y s w i s s
b a n k a c c o
u n t s i x t w
o t w o a b c d

ciphertext: AFLLSKSOSELAWAIATOOSSCTCLNMOMANT
ESILYNTWRNNTSOWDPAEDOBUOERIRICXB

This cipher is parametrized by a key which is a word or a sentence in which each letter only
appears once. The plaintext is written as a succession of rows of the same length as the key

10

(the message is completed with random letters if necessary). The ciphertext is read column by
column in alphabetic order of the letters making up the key.

Even if the cryptanalyst does not know the used cipher, in the case of the transposition cipher,
it is not very hard to guess: this is because the letter frequency distribution in the ciphertext
remains the same as in the plaintext. He must then guess the length of the key that was used
and afterward find the correct arrangement of the columns.

Another example of a transposition cipher is that of permutation which cuts up the plaintext
into blocks of length d where d is the length of the key. The d characters are then permuted
following the alphabetical order of the letters making up the key.

Example 3. In the case of the previous example (d = 8), we have:

key: MEGABUCK

plaintext: pleasetr ansferon emillion dollarst
omyswiss bankacco untsixtw otwo

ciphertext: ASTLERPE FEONSNAR LLOMINEI LASOLTDR
SWSMYSOI KACANOBC SITNTWUX OTWO

Even if the length d of the key is known to the cryptanalyst, he must try the d! possible
permutations of the d characters making up the key.

3.2.3 Entropy of a language

In order to be able to asses the security of a cipher, we need to talk a little bit about the
“entropy” of a language. Think of a page filled with characters and the English language.
How many different pages can be composed which are grammatically correct? Let this set of
grammatically correct pages be E and its cardinality be |E|. Let the total set of all possible
pages (grammatically correct or not) be denoted by P with cardinality |P|.
Now regard two pages. How many possible different pages do we have in total? Clearly there
are |P|2. How many are grammatically correct? We expect roughly |E|2. Actually, we expect
slightly more because of boundary effects (we are now allowed to have sentences which cross the
two pages).

Now look at the general case of n pages. There are |P|n possible pages and roughly |E|n of them
are grammatically correct.

It is easier to work with logarithms: define N(n) as the number of n page documents which are
grammatically correct and let M(n) = log2 N(n).

Definition 1. Let HL be the real number

HL
.
= lim

n→∞

1

n
M(n).

We call HL the entropy of the language (here measured per page). This entropy is just another
way of saying how many pages are grammatically correct.

11

This means that the number of correct n-page documents is roughly 2nHL , out of a possible
2n log

2
(|P|) such documents.

Suppose now that instead of pages we talk about characters. In the roman alphabet, there are
26 possible characters. The number of possible strings of n characters is therefore 2n log

2
(26).

You will remember from Chapter 2 that entropy per character can also be seen as the amount
of information conveyed per character. If we take a language which allows all strings, then there
are 2n log

2
(26) possible strings of length n. This gives the language an entropy per character of

log2(26) = 4.7, which is the maximal entropy on a 26 character language.

If we take the language which allows only strings of consecutive a’s, there is only one possible
string of length n giving an entropy of 0. No information is carried, because we know that
each character is an a. The entropy on a character set C of |C| characters is thus bounded
between 0 and log2(|C|), with a higher entropy showing that there is a higher number of legal
(grammatically correct) strings.

Example 4. English has an entropy per character of about HEnglish = 1.5. This means that
there are about 21.5n grammatically correct strings of n characters. Put in another way: consider
strings of 100 characters. There are 26100 ≃ 10141 such strings. Out of those, 2150 ≃ 1045 are
grammatically correct.

Assume now that we are given a ciphertext C and that the keys for this cryptosystem are taken
from the set K. Assume that the number of keys is 2H(K) where H(K) = log2(|K|). A brute
force attack on the cipher consists in trying to decrypt C with each possible key and to see which
decryptions result in a “meaningful” plaintext. We decrypt C with each of these keys. More
precisely, the messages are written in a character set C. How many of them are meaningful if
we know that the plaintext is written in language L?

Since there are 2H(K) possible keys, there are 2H(K) potential plaintexts. We assume that for
each key which is not the correct key, we end up with a plaintext which is evenly distributed
over the |C|n possible strings. Therefore, the probability that such a potential plaintext turns
out to be grammatically correct is equal to

of correct plaintexts

of possible plaintexts
=

2nHL

2n log
2
(|C|)

.

We conclude that the expected number of meaningful decryptions is

2H(K) 2nHL

2n log
2
(|C|)

= 2n(1

n
H(K)+HL−log

2
(|C|))

If this number ∼ 1 then we expect to find only a single meaningful decryption. This means
that, in principle, we are able to break the cipher. On the other hand, if there were many which
were meaningful, it might no longer be possible to determine which of these was the correct
decryption.

For the number of meaningful decryptions to be 1, we need to have

1

n
H(K) + HL − log2(|C|) = 0.

12

We can now define the concept of unicity distance. This is the length of the plaintext for which
the expected number of meaningful decryptions is only one.

n =
H(K)

log2(|C|) − HL

.

Example 5. In the case of a substitution cipher and a plaintext written in english, we have

log2 |K| = log2(26!) = 88
HEnglish = 1.5
log2(|C|) = log2(26) = 4.7

n = H(K)
log

2
(|C|)−HL

= 88
4.7−1.5 = 28.

This means that we expect strings of 28 characters or more to have a unique meaningful key.

13

3.3 Elements of Number Theory

We shall move on to public key cryptosystems in the next section, but before that, we need to
look at some topics in number theory which our public key cryptosystems will rely on.

3.3.1 Groups, Semi-Groups, and the Integers

We designate by Z the set of integers (both positive and negative). All arithmetic lessons in
primary school start with the fundamental operations which can be applied to integers: addition
and multiplication. Let us recall the basic properties related to these operations. If a, b and c

are elements of Z, addition has the following properties:

• Closure: a + b ∈ Z

• Associativity: a + (b + c) = (a + b) + c

• Identity: a + 0 = a

• Inverse: a + (−a) = 0

• Commutativity: a + b = b + a.

A set (in our case Z), together with a binary operation (here +) which fulfills the above properties
(closure, associativity, identity element, inverse, commutativity) is called an abelian group or
commutative group. Multiplication has the following properties:

• Closure: a · b ∈ Z

• Associativity: a · (b · c) = (a · b) · c

• 1 is the Identity: a · 1 = a

• Commutativity: a · b = b · a

Unfortunately, only 1 and −1 have a multiplicative inverse in Z. Therefore, Z together with
multiplication is not a commutative group but only a commutative semi-group.

Further, multiplication is distributive with respect to addition, that is

a · (b + c) = a · b + a · c
(a + b) · c = a · c + b · c.

A set (in our case Z) together with two binary operations (here + and ·) which form an abelian
group and an abelian semi-group, respectively, and fulfill the distributive law is called a com-
mutative ring.

The substraction operation a − b is simply the addition operation a + (−b) where b is replaced
by its additive inverse. The division operation, however, is not always defined because the

14

multiplicative inverse of a is not an integer (unless a = ±1). Nevertheless, if a = bc for two
integers b and c, we say that b (or c) divides a, or that b (or c) is a divisor of a, and we write b|a
(or c|a). A prime number is a positive integer other than 1 which has no other divisors than 1
and itself.

3.3.2 Euclidean Division

Let a and b be integers. If b is not zero, then there exist two integers, the quotient q and the
remainder r, such that

a = bq + r and 0 ≤ r < |b|.
The calculation of q and r is called the Euclidian division of a by b.

3.3.3 Greatest Common Divisor (GCD)

Let a and b be two integers. The set of positive integers which divide both a and b is finite.
Further, it is non-empty since 1 divides any integer. Consequently, this set has a member which
is greater than or equal to all others: this is the so called greatest common divisor of a and b,
written as gcd(a, b). If gcd(a, b) = 1, a and b are relatively prime (or coprime).

Some basic properties of the GCD are:

1. gcd(a, b) = gcd(b, a), by symmetry of the definition,

2. gcd(a, 0) = a, as a is the largest divisor of a and any integer divides 0,

3. gcd(a, b) = gcd(a, b + ca) for any c ∈ Z.

This gives rise to an efficient way of computing gcd(a, b) by a judicious choice of c in property
3. Let’s assume, without loss of generality (because of property 1), that |b| ≥ |a|. From Section
3.3.2, we know that we can write b = aq + r, where 0 ≤ r < |b| which yields r = b − qa. This
allows us to write gcd(a, b) = gcd(a, b − qa) = gcd(a, r). By successively replacing the greater
term by the remainder of the Euclidean division, we will eventually reduce our expression to
gcd(a, b) = gcd(rn, rn−1) = gcd(rn, 0) = rn:

b = aq1 + r1 gcd(a, b) = gcd(a, b − aq1) |a| < |b|
= gcd(a, r1) r1 < |a|

a = r1q2 + r2 = gcd(a − r1q2, r1)
= gcd(r2, r1) r2 < r1

r1 = r2q3 + r3 = gcd(r2, r3) r3 < r2
...

...
...

rn−2 = rn−1qn + rn = gcd(rn, rn−1) rn < rn−1

rn−1 = rnqn+1 + 0 = gcd(rn, 0) 0 = rn+1 < rn

= rn.

We know that this algorithm will terminate because rn is a decreasing positive series: |b| > |a| >

r1 > r2 > . . . > rn ≥ 0.

15

3.3.4 Extended Euclidean Algorithm

Theorem 1. For any integers a and b, there exist integers α and β such that

αa + βb = gcd(a, b). (3.1)

.

This is known as Bézout’s identity and is useful, in particular, for solving Diophantine equations
(equations with integer coefficients whose solutions are integers).

In order to find the values α and β, we can extend the previous algorithm somewhat, hence the
name extended Euclidean algorithm. Working backwards, we can start with gcd(a, b) = rn and
substitute each rk with rk−2 − rk−1qk for k between 2 and n, eventually replacing r1 by b − aq1

so as to be left with a linear combination of a and b.

gcd(a, b) = rn

= rn−2 − rn−1qn eliminated rn

= rn−2 − (rn−3 − rn−2qn−1)qn eliminated rn−1

= (−qn)rn−3 + (1 + qn−1qn)rn−2 grouped like terms
= rn−3ρa + rn−2ρb replaced complex terms by coefficients
= rn−4πa + rn−3πb eliminated rn−2
...
= δar1 + δbr2

= γaa + γbr1 eliminated r2

= αa + βb eliminated r1.

As we can see, each remainder rk can be expressed as a linear combination of a and b. This is
true in particular for rn = gcd(a, b).

Example 6. Let’s use this method to calculate the missing values in the following Bézout’s
identity: α120 + β23 = gcd(120, 23).

a b qn rn

120 23 5 5 = 1 · 120 − 5 · 23
5 23 4 3 = −4 · 120 + 21 · 23
5 3 1 2 = 5 · 120 − 26 · 23
2 3 1 1 = −9 · 120 + 47 · 23

Which shows that −9 · 120 + 47 · 23 = gcd(120, 23) = 1.

3.3.5 Congruences

Let a and b be two integers. We say that a is congruent to b modulo m and write

a ≡ b (mod m) (3.2)

16

if and only if m divides a − b. The expression (3.2) is called congruence and m is its modulus.

The congruency (3.2) thus implies that

a = b + xm (3.3)

for a certain integer x.

Note that, if r is the remainder of the Euclidian division of a by m, we have

a ≡ r (mod m)

and r is known as the residue of a modulo m. We can easily show that a ≡ b (mod m) if and
only if their residues modulo m are the same.

Similarly, the modulus m being fixed, we can show that the relation between a and b as defined
by (3.2) is a relation of equivalence on Z because it is

• reflexive: a ≡ a (mod m),

• symmetrical: if a ≡ b (mod m) then b ≡ a (mod m),

• and transitive: if a ≡ b (mod m) and b ≡ c (mod m) then a ≡ c (mod m)

Consequently, this relation defines equivalence classes, obtained from any integer a by adding
all the multiples of m. We denote these equivalence classes by |a|m and call a a representative
of |a|m. We can easily show that each equivalence class contains a unique integer r between 0
and m: 0 ≤ r < m, which is the residue of all the elements of the class |r|m. There are therefore
m equivalence classes which are |0|m, |1|m,. . . , |m− 1|m. The set of these m equivalence classes,
Zm, is the set of integers modulo m.

3.3.6 Operations Modulo m

Let us consider two classes modulo m; a is a representative of the first and b of the second. Let
us define the sum of these two classes as the class of a + b and the product as the class of ab:

|a|m + |b|m .
= |a + b|m and |a|m · |b|m .

= |ab|m

Let us first verify that the above definitions do not depend on the particular representative
chosen for each equivalence class. If a and a′ are two representatives of |a|m and b and b′ are
two representatives of |b|m then

a + b ≡ a′ + b′ (mod m)

ab ≡ a′b′ (mod m)

Indeed, there exist two integers x1 and x2 such that a = a′ + x1m and b = b′ + x2m, from which
we have (a+ b) = (a′ + b′)+(x1 +x2)m and (ab) = (a′b′)+(a′x2 + b′x1 +x1x2m)m, which proves
the property (cf. (3.3)).

17

Example 7. The tables of addition and multiplication modulo 3 are:

+ 0 1 2 × 0 1 2
0 0 1 2 0 0 0 0
1 1 2 0 1 0 1 2
2 2 0 1 2 0 2 1

The tables of addition and multiplication modulo 4 are:

+ 0 1 2 3 × 0 1 2 3
0 0 1 2 3 0 0 0 0 0
1 1 2 3 0 1 0 1 2 3
2 2 3 0 1 2 0 2 0 2
3 3 0 1 2 3 0 3 2 1

We can easily show that Zm is closed under modulo m addition, which is associative, has a
identity element (|0|m), an inverse for each class |a|m (| − a|m) and is commutative. It follows
that Zm forms a commutative group with regard to addition. Furthermore, Zm is closed under
multiplication modulo m, which is also associative, has a neutral element (|1|m) and is commu-
tative. Therefore, Zm is a commutative semi-group with regard to multiplication. Consequently,
Zm is a commutative ring.

Multiplication does not always admit an inverse. Indeed, if for example m = 4, |2|4 does not have
an inverse: none of the classes, |1|4, |2|4, |3|4, when multiplied by |2|4 results in |1|4. However, if
m = 3, we see that |1|3 · |1|3 = |1|3 whereas |2|3 · |2|3 = |1|3. Consequently each non-zero element
has a multiplicative inverse and Z3 is a field.

We claim that a has a multiplicative inverse modulo m if and only if gcd(a,m) = 1. Let us first
show that a has a multiplicative inverse if gcd(a,m) = 1. Indeed, we can explicitly construct
the multiplicative inverse of a by using the extended Euclidian algorithm. We have

αa + µm = gcd(a,m) = 1
αa ≡ 1 (mod m)
α = a−1.

Assume now, conversely, that a has an inverse modulo m, i.e.,

a · a−1 ≡ 1 (mod m)

a · a−1 + bm = 1 for some b ∈ Z. (3.4)

As gcd(a,m) is a divisor of both a and m, it also divides any linear combination of a and m.
Therefore, according to (3.4), 1 should be divisible by gcd(a,m), implying that gcd(a,m) = 1,
which establishes the claim. When m is prime, which is to say that gcd(a,m) = 1 for all a such
that 0 < a < m, all non-zero elements of Zm have an inverse. So Zm is a field if and only if m

is prime. In this case, we call Zm a Galois field, written GF(m).

A particularly easy operation to do is exponentiation modulo m, that is

x ≡ an (mod m)

18

Indeed, let’s calculate for example the residue of 312 modulo 7. We can successively reduce the
base modulo 7 in the following way:

|312|7 = (|32|7)6 = (|2|7)6 = |64|7 = |1|7,

and so
312 ≡ 1 (mod 7).

However, the calculation of the discrete logarithm of a number x modulo m, that is determining
x such that

ax ≡ b (mod m)

is markedly more difficult and no efficient algorithm is known. For instance, to find 2x ≡ 3
(mod 13), we can successively try

21 ≡ 2 (mod 13)

22 ≡ 4 (mod 13)

23 ≡ 8 (mod 13)

24 ≡ 3 (mod 13)

25 ≡ 6 (mod 13)

...

from which we conclude that x = 4. This procedure becomes very inefficient for large values of m,
and furthermore a congruence of this type does not always have a solution. As the exponential
function is easy to compute, but its inverse, the logarithm is hard to compute, we say that this
function is a one-way function. In the same way, a phone-book is a one-way function, because
it is easy to look up someone’s number given their name, but it is much more cumbersome to
find the name of a person given only their phone number.

3.3.7 Euler’s Totient Function

The complete set of modulo m residues is {0, 1, 2, . . . ,m − 1}. The reduced set of modulo m

residues is the set of modulo m residues which are coprime to m.

Example 8. The complete set of modulo 10 residues is {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} but the reduced
set of modulo 10 residues is {1, 3, 7, 9}.

Euler’s totient function (or Euler phi function) φ(m) is the number of elements of the reduced
set of modulo m residues. For our example, we have φ(10) = 4. Note that φ(1) = 1.

If m is a prime number, each non-zero residue r = 1, 2, . . . ,m−1 is coprime to m. Consequently,
φ(m) = m − 1 in this case.

Furthermore, if m is prime, the reduced set of modulo m2 residues is {1, 2, . . . ,m − 1,m +
1, . . . , 2m − 1, 2m + 1, . . . ,m2 − 1} and thus contains m2 − 1 − (m − 1) = m(m − 1) elements,
so φ(m2) = m(m − 1). In general, we can show that φ(mn) = mn−1(m − 1) if m is prime.

19

The Euler function has the interesting property of preserving multiplication, that is to say

φ(mn) = φ(m)φ(n)

if m and n are relatively prime. Consequently, if an integer m is decomposed into prime factors
pi:

m =
∏

i

pei

i

with ei > 0, its Euler totient function will be

φ(m) =
∏

i

pei−1
i (pi − 1) = m

∏

i

(1 − 1

pi

).

3.3.8 Euler’s Theorem

Theorem 2. If a and m are relatively prime,

aφ(m) ≡ 1 (mod m).

Let’s prove this theorem. Let {r1, r2, . . . , rφ(m)} be the reduced set of modulo m residues.
Multiply each of them by a and examine the set of residues

{

|ar1|m, |ar2|m, . . . , |arφ(m)|m
}

.

As on the one hand a and m are relatively prime, and on the other hand ri and m are also
pairwise relatively prime for all 1 ≤ i ≤ φ(m), ari and m are relatively prime. Consequently,
|ari|m = |rj |m for a certain 1 ≤ j ≤ φ(m) (see exercise 15). Also, if i 6= k, then |ri|m 6= |rk|m,
and (see exercise 16)

|ari|m = |a|m · |ri|m 6= |a|m · |rk|m = |ark|m,

which shows that each residue of ari modulo m is a different member of the reduced set of
modulo m residues, and so

{

|ar1|m, |ar2|m, . . . , |arφ(m)|m
}

=
{

|r1|m, |r2|m, . . . , |rφ(m)|m
}

.

From this, it follows that

∣

∣

∣
aφ(m)r1r2 . . . rφ(m)

∣

∣

∣

m
= |ar1|m · |ar2|m · . . . · |arφ(m)|m
= |r1|m · |r2|m · . . . · |rφ(m)|m
=

∣

∣r1r2 . . . rφ(m)

∣

∣

m

and so, as ri and m are relatively prime for all 1 ≤ i ≤ φ(m),

∣

∣

∣
aφ(m)

∣

∣

∣

m
= |1|m .

QED

20

3.3.9 Fermat’s Theorem

Theorem 3. A direct corollary of Euler’s theorem is Fermat’s theorem: if m is prime and if a

is not divisible by m, then
am−1 ≡ 1 (mod m) (3.5)

3.3.10 Calculating Modular Inverses

We have shown that a has an inverse modulo m, i.e., that there exists an element (a−1) such
that

a.a−1 ≡ 1 (mod m), (3.6)

if and only if a and m are relatively prime. There are three ways to compute this inverse:

1. Examine all the numbers 1, 2, . . . ,m − 1 until a number is found satisfying (3.6).

2. If the Euler phi function φ(m) is known, we compute

a−1 ≡ aφ(m)−1 (mod m). (3.7)

Euler’s theorem then guarantees that a.a−1 ≡ 1 (mod m).

3. Starting from the Bézout’s identity (3.1), we have that αa + µm = gcd(a,m) = 1. This
shows that a−1 = α as αa ≡ 1 (mod m). We can use Euclid’s extended algorithm to
compute α.

3.3.11 Chinese Remainder Theorem

Theorem 4. Let m1 and m2 be two relatively prime numbers. Then, for all integers r1 and r2,
there exists an integer r such that any integer a which satisfies the congruences

a ≡ r1 (mod m1) (3.8)

a ≡ r2 (mod m2) (3.9)

also satisfies
a ≡ r (mod m1m2). (3.10)

To show this result, consider two integers u and v which satisfy Bézout’s identity

um1 + vm2 = 1, (3.11)

and let
r = r2um1 + r1vm2. (3.12)

Then, r ≡ r1vm2 (mod m1), but Bézout’s identity (3.11) implies that vm2 ≡ 1 (mod m1), and
thus r ≡ r1 (mod m1). The same reasoning gives r ≡ r2 (mod m2), and a satisfies the first two
congruences (3.8) et (3.9).

21

If a is an integer which satisfies these congruences, we have a − r ≡ 0 (mod m1) and a − r ≡ 0
(mod m2). Thus, m1 and m2 divide a − r. As these two numbers are coprime, their product
m1m2 also divides a − r, and a satisfies the third congruence (3.10). QED.

This theorem can be extended by recurrence to any number of congruences.

3.4 Asymmetric Encryption Algorithms

We now have the tools to discuss public key cryptography.

3.4.1 Conditions for Setting up a Public Key Cryptosystem

Let us remind ourselves that an encryption algorithm E, parameterized by a key K, transforms
the plaintext P into the ciphertext C = EK(P). The deciphering algorithm D, parametrized by
a key k, does the inverse transformation P = Dk(C).

In Section 3.2, we had only considered symmetric ciphers, for which the same key was used both
for encryption and decryption: K = k. Such a cryptosystem therefore requires that the secret
key be previously communicated between the sender and receiver, which is a delicate operation,
especially if the key must be broadcast to a large number of users, as is the case for computer
networks. If the secret key falls in the hands of the enemy, the whole system is compromised.

A public key cryptosystem gets rid of this problem by allowing different keys for encryption and
decryption: K 6= k. The key K is public whereas the key k is secret. In this way, the encryption
key K can be transmitted along a non-secure channel (cf. Fig 3.3), as the enemy knows it.

Alice C = EK(P) Dk(C) = P Bob

Oscar

Key
GeneratorChannel need not be secure

K public key k private secret key

Figure 3.3: Asymmetric Cipher.

In order that a public key cryptosystem works correctly, several conditions must be met:

22

1. The encryption EK(P) of plaintext message P is fast and easy to compute.

2. The decryption Dk(C) of ciphertext C is fast and easy to compute, provided the receiver
knows the key k.

3. However, computing E−1
K (C) is extremely difficult and impossible to achieve in practice,

within a reasonable timeframe.

4. Lastly, as in any cryptosystem, the decryption algorithm must be the inverse of the en-
cryption algorithm: Dk(EK(P)) = P .

As we can see, EK is a one-way function. Furthermore, because knowing the key k makes
calculating the inverse easy, it is no longer quite a one-way function and becomes a trap-door
function.

So a user who wishes to send and receive ciphertexts uses two keys, one of them (k) he keeps
secrete and the other (K), he publishes in a directory where all the other users can look it up.
Key distribution is thus greatly facilitated.

3.4.2 The Rivest-Shamir-Adleman Algorithm (RSA)

In a RSA cryptosystem, plaintext messages P , ciphertexts C and keys K,k are coded as integers
modulo m and are all included between 1 and m− 1. Consequently, P , C, K and k ∈ Zm. The
module m is made public. The encryption and decryption algorithms are respectively

EK(P) = C ≡ PK (mod m) (3.13)

with 1 ≤ C ≤ m − 1 and
Dk(C) = P ≡ Ck (mod m) (3.14)

with 1 ≤ P ≤ m − 1, where the keys are chosen so that

pgcd(K,φ(m)) = 1 (3.15)

Kk ≡ 1 (mod φ(m)) (3.16)

with 1 ≤ K,k ≤ φ(m) − 1. Note that this last congruence (3.16) indicates that k is the inverse
of K modulo φ(m) and that this inverse always exists since K and φ(m) are relatively prime
(3.15).

Example 9. Consider the following trivial example. Each letter of the plaintext is encoded by
its alphabetic position and we take m = 33, from which φ(m) = φ(11)φ(3) = 20. Let’s choose
K = 7, which is relatively prime to φ(m). We can then calculate k = 3 as 7 · 3 ≡ 1 (mod 20).

23

Consequently, the encryption and decryption of the word “goodbye” become:

plaintext ciphertext decryption
P C = |P 7|33 |C3|33

G 07 28 07 G

O 15 27 15 O

O 15 27 15 O

D 04 16 04 D

B 02 29 02 B

Y 25 31 25 Y

E 05 14 05 E

We must now check that this algorithm satisfies the conditions laid out in Section 3.4.1 which
define a public key cryptosystem.

1. First of all, encryption is an exponentiation operation, which is fast, as we saw in the
example in Section 3.3.6, and is furthermore easy to implement in hardware.

2. Decryption is also an exponentiation operation, which is also fast and easy so long as k

is known.

3. In order to satisfy the third condition, it must be very difficult to discover C and k if k

is not known.

Let us first suppose that m is prime. In that case, φ(m) = m− 1 is known since m is public and
the congruence (3.16) becomes

Kk ≡ 1 (mod m − 1).

Consequently, k is is equal to K−1 modulo m − 1, and can be computed using methods seen
in Section 3.3.10. We know that this computation must be easy in order to allow the user to
compute k when setting up his cryptosystem. This would allow the cryptanalyst to compromise
the system, which is unacceptable. Clearly, we must choose m such that φ(m) be difficult to
compute.

We shall therefore choose an m which is not prime,

m = pq (3.17)

where p and q are prime numbers, called initial conditions of the algorithm. Now, φ(m) =
(p − 1)(q − 1) can only be known if we know the two prime factors p and q. Consequently,
the regular user will publish K and m but neither k nor p nor q which he will therefore be the
only one to know. Only he will be able to calculate k relatively easily knowing K using one of
the algorithms seen in Section 3.3.10, because he knows φ(m). The cryptanalyst, however, not
having access to φ(m), will find it much more difficult to compute k. We will see in the following
section that he will be unable to compromise the system within a reasonable timeframe, which
shows that the third condition is satisfied.

4. Lastly, we must check that the functions E and D are inverses, that is to say Dk(EK(P)) =
P or in other terms that

(PK)k ≡ P (mod m). (3.18)

24

As (3.16) is satisfied, there must exist an integer x such that Kk = 1 + xφ(m) and thus

PKk = P 1+xφ(m) = P · (P φ(m))x.

If P et m are relatively prime, Euler’s theorem shows that P φ(m) ≡ 1 (mod m). So

|P · (P φ(m))x|m = |P |m · (|P φ(m)|m)x = |P |m · |1x|m = |P |m · |1|m = |P |m,

and (3.18) is satisfied.

Suppose that P and m are not relatively prime, which is quite rare if m is large. As m = pq

with p and q prime, we must have either P = ip ou P = jq. Suppose without loss of generality
that P = ip. In this case, |P |p = |i|p.|p|p = |0|p and so

P xφ(m) ≡ 0 (mod p). (3.19)

On the other had, as q is prime and does not divide P , Fermat’s theorem results in

P q−1 ≡ 1 (mod q),

and therefore that
P x(p−1)(q−1) = P xφ(m) ≡ 1 (mod q). (3.20)

Consequently, the congruences (3.19) (3.20) together with the Chinese remainder theorem imply
that there exists and integer r such that

P xφ(m) ≡ r (mod pq),

and so
PKk = P 1+xφ(m) ≡ Pr (mod pq). (3.21)

If u and v are two integers satisfying Bézout’s identity up + vq = 1, the relation (3.12) allows
us to determine this integer r: r = up · 1 + vq · 0 = up, or even r = 1 − vq. From that we have

|Pr|pq = |P |pq · |1 − vq|pq = |P |pq · (|1|pq − |vq|pq) = |P |pq − |Pvq|pq = |P |pq − |ivpq|pq = |P |pq

and (3.21) becomes
PKk ≡ P (mod pq),

which shows that the last condition set in the previous section is fulfilled.

3.4.3 Security of the RSA Algorithm

How would a cryptanalyst go about breaking an RSA cryptosystem? There are three possible
angles of attack.

1. He can first try to determine the initial conditions p and q. He can then easily compute
φ(m) = (p − 1)(q − 1) and then find k from (3.16). But if m is very large, factorisation of
m into two prime number is very difficult. One method would be to try all prime numbers up

25

to
√

m. Even the most efficient algorithms know to date are unable to factor large integers in
reasonable time. Rivest, Shamir and Adleman estimated that it would take 4 million years to
factorise a 200 digit number m with a 1Ghz processor.

2. He can try to solve
C ≡ PK (mod m)

with C, K and m known in order to find the plaintext P (the key k will still remain unknown).
He is then confronted with the problem of computing a discrete logarithm, which is very
difficult, as seen in Section 3.3.6.

3. A third possible attack is successive encryption of the ciphertext. Indeed, since the
cryptanalyst knows K, m and C, he can encrypt the ciphertext C himself giving a new ciphertext
C1:

C1 = EK(C) ≡ CK (mod m).

He can repeat the same operation on C1, giving C2 and so on for any i:

Ci+1 = EK(Ci) ≡ CK
i (mod m).

As 1 ≤ C ≤ m − 1, there are a finite number of Ci and it is possible that for a certain i = n,
Cn = C. In that case,

Cn = C = EK(Cn−1) = EK(P) ≡ PK (mod m)

and so the ciphertext Cn−1 must be the same as the original plaintext P . This integer n, called
the order of E(·), must therefore be as large as possible so that such an attack be impossible
to realise in a relatively short time. Rivest showed that if the integers p− 1 and q − 1 had high
prime factors (for instance p−1 = 2p′ and q−1 = 2q′, where p′ and q′ are prime) the probability
of such an attack succeeding was near zero.

Consequently, cryptanalysis cannot, in practice, compromise an RSA cryptosystem.

3.4.4 Notes on the Choice of Parameters for an RSA Cryptosystem

While the cryptanalyst is fortunately presented with unsurmountable problems this does not
mean that the cryptographer’s choices are trivial. Two problems must be considered:

1. In order to resist the third type of attack mentioned in the previous Section, p − 1 and
q − 1 must have large prime factors. Even once p′ and q′ are chosen, we must check that
p and q are prime. Typically, p and q are 100 digit numbers, so that m be a 200 digit
number. It is much easier to test if a 100 digit number is prime than to factor a 200 digit
number (which the cryptanalyst’s first attack attempts to do), but this nevertheless takes
time.

2. With the encryption given in Section 3.4.2, we notice that the numbers 10 and 21 of the
plaintext are encrypted respectively to 10 and 21. Indeed, 10 ≡ 107 (mod 33) and 21 ≡ 217

(mod 33), so the ciphertext and plaintext are identical for these values; this is obviously

26

an advantage for the cryptanalyst. The RSA algorithm does not hide all plaintexts P and
sometimes C = P , which means

PK ≡ P (mod m).

We can show that the number σ of messages 1 ≤ P ≤ m−1 that the cryptosystem cannot
hide is equal to

σ = (1 + gcd(K − 1, p − 1))(1 + gcd(K − 1, q − 1)) − 1.

The key K must thus be chosen in order to minimise σ. If the key is chosen without regard
for this, more than half of the plaintext may stay disclosed!

Lastly, let us note that the RSA algorithm can also be used for other tasks than information
protection, such as authentification.

3.5 Bibliographical References

D. R. Stinson, Cryptography: Theory and Practice. CRC Press, 1995.

Enigma Sibulator, Bletchley Park Website, http://www.bletchleypark.org.uk

C. E. Shannon, Prediction and Entropy of Printed English. Bell System Technical Journal, Vol
30 (1951), pp.50-64 Reprinted in D. Slepian, editor, Key Papers in the Development of Infor-
mation Theory, IEEE Press, NY, 1974.

27

3.6 Exercises

Exercise 1. Break the following ciphertexts which have been encrypted using a monolalphabetic
substitution which rotates the letters of the alphabet k positions. (NB The plaintext is in
French.)

a) TU JEKI BUI FUKFBUI TU BQ WQKBU BUI RUBWUI IEDJ BUI FBKI RHQLUI

b) JK ZUAY RKY GAZXOINOKTY RK VRAY IKRKHXK KYZ IGROLUXTOKT

The first sentence (a) is a French translation of a sentence said by Julius Caesar taken from “La
Guerre des Gaules”. The second (b) is a particular point of view.

Exercise 2. For the English language, what is the unicity distance of a monoalphabetic cipher
that shifts the letters by k positions? What is the minimal length of the ciphertext that allows
a cryptanalyst to break this cipher? (He knows the encryption method, but does not know k.)
Show that if the length of the ciphertext known to the cryptanalyst is smaller than the unicity
distance, then the cryptanalyst is not able to reconstruct the corresponding plaintext.

Exercise 3. Repeat exercise 2 for the Caesar cipher with k = 3

Exercise 4. The plaintext “thisisasample” is encrypted as “KVCFLTADLDDFR”.

a) Was the cipher a monoalphabetic or polyalphabetic cipher (Vigneère cipher)?

b) Which key was used?

Exercise 5. The alphabet of a source is make up of five symbols which turn up independently
from each other and each have the same probability pi = 0.2 (1 ≤ i ≤ 5) of being emitted. These
symbols are encrypted by monoalphabetic substitution. Does this method seem sufficient so
resist the attack of a cryptanalyst who only has the ciphertext and not the plaintext (ciphertext-
only attack)? Why?

Exercise 6. Decrypt the ciphertext “EOBABNOKTOTEORTX” obtained by transposition
with the key SURF.

Exercise 7. Calculate x such that

a) x ≡ 48 (mod 15)

b) x ≡ 1234567 (mod 99)

c) x ≡ 212334565789 (mod 4).

28

Exercise 8. Calculate Euler’ totient function φ(m) fir m = 29, 30, 31 and 32.

Exercise 9. Prove the following properties.

• gcd(a, 1) = gcd(a − a · 1, 1) = gcd(0, 1) = 1,

• gcd(a, p) = 1 with a 6= 0 and p prime,

• gcd(a, p) = p with a = 0 and p prime.

Exercise 10. Calculate the GCD of

a) 234 and 325

b) 97 and 109.

Exercise 11. Find two integers u and v which satisfy Bézout’s Identity

234u + 325v = pgcd(234, 325).

Exercise 12. If they exist, calculate the following inverses:

a) x ≡ 3−1 (mod 10)

b) x ≡ 3−1 (mod 15)

c) x ≡ 3−1 (mod 23).

Exercise 13. Find an integer x which satisfies the congruences

x ≡ 7 (mod 11)

x ≡ 6 (mod 13).

Exercise 14. Show that the relation (3.2) is symmetrical and transitive.

Exercise 15. If a ≡ b (mod m) and b and m are relatively prime, show that a et m are also
relatively prime.

Exercise 16. a) If a ≡ a′ (mod m), show that for any integer t

at ≡ a′t (mod m).

b) If ad ≡ a′d (mod m) and d and m are relatively prime, show that

a ≡ a′ (mod m).

Does this property still hold if d and m are not relatively prime?

29

Exercise 17. Must a public key cryptosystem be able to resist a ciphertext only attack? a
known plaintext attack? a chosen plaintext attack?

Exercise 18. The initial conditions of an RSA cryptosystem are p = 23 et q = 47, whereas the
public key is K = 13. What is the secret key?

Exercise 19. You are a cryptanalyst faced with an RSA cryptosystem where m = 187 and
K = 7.

a) You have intercepted the ciphertext C = 183, which was sent by the regular user. Break this
ciphertext without trying to find the secret key.

b) Compromise the whole system by working out the secret key.

Exercise 20. The initial conditions of an RSA cryptosystem are p = 97 and q = 109. Among
the following public keys, which ones can effectively be chosen?

a) K = 123

b) K = 865

c) K = 169

Exercise 21. A cryptanalyst knows that, for m = 10001, φ(m) = 9792. What are the initial
conditions p and q ? (Hint: we can write φ(m) as φ(m) = m − p − q + 1.)

Exercise 22. As explained in Section section 3.4.3, during the design phase of an RSA cryp-
tosystem, it is useful to have an algorithm which quickly tests whether a given integer p is prime
or not.

Wilson’s theorem, which explains that

(p − 1)! ≡ −1 (mod p)

if and only if p is prime gives us such an test: the function

f(p) = sin(π
(p − 1)! + 1

p
)

is zero if and only if p is prime. Is this test usable in practice?

Exercise 23. Instead of encrypting the plaintext with the public key and decrypting it with the
secret key, we perform the opposite operation: the encryption key is the secret key k whereas
the decryption key is the public key K. What could this system be used for?

30

